M. Sc. Chemistry Examination, 2017

(4th Semester)

ORGANIC CHEMISTRY (SPECIAL)

PAPER - XIII-O

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - O - 4131

1. Draw the structure of the product(s) with proper stereochemistry (if any) of the following reactions and explain with mechanism (Answer *any five*). $2\frac{1}{2} \times 5$

a) Me O Si
$$\stackrel{\checkmark}{\swarrow}$$
 H $\frac{\text{Cat.}(\text{Bu}_3\text{Sn})_2}{\text{hv}}$

b)
$$\frac{\text{SePh}}{\text{N}} \frac{\text{Bu}_{3}\text{SnH, AIBN}(\text{cat})}{\text{C}_{6}\text{H}_{6}, \text{ reflux}}$$

c) $\underbrace{\begin{array}{c} \text{SiMe}_3 \\ \text{O} \\ \text{O} \end{array}}_{\text{H}} \text{I} \underbrace{\begin{array}{c} \text{i) SmI}_2, \text{ THF-HMPA} \\ \text{ii) H}_3\text{O}^{\oplus} \end{array}}_{\text{H}}$

d) $Me \longrightarrow N \longrightarrow Ph$ $H \longrightarrow COOMe \longrightarrow Bu_3SnH / AIBN \longrightarrow Tol. , reflux$

e) Me S = S S = S $Acetone / CH_3CN$

f) $\begin{array}{c} H & CH_2I \\ \hline \\ O & \\ \hline \\ O & \\ \end{array}$ OH $\begin{array}{c} i) \text{ Me Li, CS}_2, \text{ MeI} \\ \hline ii) \text{ Bu}_3\text{SnH, AIBN(Cat.)} \\ C_6H_6, \text{ reflux} \end{array}$

B) Molecule **E** acting as a host for molecule **F**.

 $\bigcap_{N} R$ $\bigcap_{N} R$ $\bigcap_{N} R$

 $\mathbf{E}: \mathbf{R} = 9 - \mathbf{Anthryl}$

 $\begin{array}{c|c}
NH_2 \\
N \\
N \\
N \\
N \\
n-Pr \\
\mathbf{F}
\end{array}$

ii) Explain why α -cyclodextrin and β -cyclodextrin show different effects on the rate of cycloaddition of cyclopentadiene and acrylonitrile. (1×2)+1

b) The following two compounds behave differently towards tributyltin hydride in presence of AIBN(cat.) under refluxing in toluene. Draw the structure of the product(s) and explain your answer.

OTMS $Me \qquad \qquad \frac{\text{Hg(O Ac)}_2 / \text{H}_2\text{O-THF}}{\text{Cl}}$ $Me \qquad \qquad \text{NaBH}_4$ CN.

c)

Discuss the mechanism of the above reaction. $2\frac{1}{2}$

- ii) Write the structure of the molecular self-assembly formed by hydrogen bonding interaction involving three molecules of 5, 5-diethylbarbituric acid and three molecules of 2, 4, 6-triamino-5-n-butylpyrimidine. $1\frac{1}{2}+1\frac{1}{2}$
- b) Give one example of each of the following types of receptors (*attempt any three*) 1×3
 - i) Two-dimensional molecular cleft.
 - ii) Hemispherand
 - iii) 3-Cryptand
 - iv) Azide binding cryptand.
- c) i) Show how a receptor synthesized from the following two compounds can effectively catalyze the exchange of C-2 hydrogens of quinuclidinone (1-azabicyclo [2.2.2] octan-3-one) in CDCl₃ saturated with D₂O.

ii)
$$O$$
 N_2
 $COOEt$
 $Rh_2(OAc)_4, DCM$
 Δ

UNIT - O - 4132

- 3. Attempt *any four* of the following questions: 4x4
 - a) i) Give one method for determination of σ_{α}^{+} and σ_{β}^{+} values of thiophene and furan.
 - ii) In the pKa vs σ plot for 3-/4-substituted pyridines, the σ values for 4-NO₂, 4-CN and 4-CO₂Et do not show good correlation. Comment on the nature of deviation and give suitable explanation. $2\frac{1}{2}+1\frac{1}{2}$
 - b) Discuss the approach of Taft for determination of σ^* values (which are measures of inductive effect) of different substituents.
 - c) trans-2-(m-and p-substituted benzoyloxy-)-cyclohexyl p-toluenesulphonates, in acetic acid in the presence of acetate ions, yield a linear plot with σ with a ρ value of -1.00. If the carbonyl oxygen is labelled with 18 O, and the reaction product is reduced

with LiAlH₄, the *trans*-1, 2-cyclohexanediol retains 50% of the activity.

Comment on the mechanism of the reaction.

d) i) The Lossen rearrangement of the potassium salts of acyl hydroxamic acids

$$R^{1}CO\overset{\ominus}{N}OCOR^{2} \xrightarrow{\stackrel{\ominus}{O}H, H_{2}O} R^{1}NCO + R^{2}COO^{\ominus}$$

$$\downarrow fast$$

$$Amine + CO_{2}$$

yields the following ρ values:

R¹ =
$$XC_6H_4$$
, $R^2 = C_6H_5$: $\rho = -2.59$
 $R^1 = C_6H_5$, $R^2 = XC_6H_4$: $\rho = +0.87$

Show how the mechanism is consistent with these results.

ii) The log k for the following thermal elimination reaction shows a good correlation with σ^+ with a ρ value of -0.66.

$$X \xrightarrow{\text{CH}(\text{CH}_3)\text{OCOCH}_3} \xrightarrow{\text{vapour phase}} \\ X \xrightarrow{\text{CH} = \text{CH}_2 + \text{CH}_3\text{COOH}}$$

Comment on the nature of the transition state of the reaction. $2\frac{1}{2}+1\frac{1}{2}$

[Turn over

4

[5]

- e) i) A Hammett plot for the second order rate constants of urethane formation from ethyl chloroformate and XC₆H₄NH₂ in anhydrous acetone has a ρ value of –5.56 for X = *p*-OCH₃, *p*-CH₃, *m*-CH₃ and H using σ values; a ρ value of 1.57 is found for x = *p*-Br, *m*-Cl, *m*-NO₂, *p*-COOC₂H₅ and *p*-NO₂ using σ where appropriate. Comment on the mechanism of the reaction.
 - ii) Explain how the magnitudes of the ρ values for log f $vs \ \sigma^+$ plot for aromatic electrophilic substitution reactions gives an idea about the nature of the transition states of the reactions (f = partial rate factor). $2\frac{1}{2}+1\frac{1}{2}$
- 4. Attempt *any three* of the following questions: 3x3
 - a) i) Show how the following molecule can act as a host for *S*-tryptophan.

$$O \longrightarrow O \longrightarrow H \longrightarrow H$$

$$R^{1}$$

$$R^{1} = 2 - Naphthyl$$

d) Identify [A], [B] and [C]. Discuss the mechanism for the radical step only. $1\frac{1}{2}+1\frac{1}{2}$

$$\begin{array}{c|c}
SPh \\
\hline
& Amberlyst A-21 \\
\hline
& H \\
\hline
& O
\end{array}$$

$$\begin{array}{c|c}
Amberlyst A-21 \\
\hline
& C_6H_6, reflux
\end{array}$$

$$\begin{array}{c|c}
EB & CrO_3.HOAc \\
\hline
& MeLi-THF \\
Satd.NH_4Cl
\end{array}$$

$$\begin{array}{c|c}
CO & OR \\
\hline
\end{array}$$

Discuss the mechanism of the following reaction.

$$\begin{array}{c} \text{OMe} \\ \\ \text{i) HClO}_4\text{-CHCl}_3 \\ \\ \text{ii) Pd-C, H}_2, \text{EtOH} \\ \\ \text{iii) Et}_3 \text{ O BF}_4^-, \text{DCM} \end{array}$$

e) Predict the product in the following reactions and explain with mechanism (*answer any one*).

i)
$$Me_3Si$$

COOH $a)(COCI)_2/Py$
 $b)CH_2N_2 \text{ in } Et_2O$
 $c)Cu(I)Br$
 $COOH$

[Turn over

ii) Show how a pentaprotonated form of the following compound catalyzes the conversion of ATP to ADP.

 $1\frac{1}{2}x2$

- d) i) Show the molecular interactions in the following cases:
 - A) Molecule **D** acting as a host for urea.

$$R = \frac{1}{N} CH_2 - O - CH_2 N$$

g)
$$\xrightarrow{i) \text{ Cp2TiCl}_2, \text{ Zn-dust, THF}} \xrightarrow{ii) 10\% \text{ H}_2\text{SO}_4}$$

h)
$$O$$
 $COOMe$ $Mn(OAc)_3$ $Cu(OAc)_2$

2. a) Account for the stereo chemical preference of the *cis*-isomer over the *trans*-isomer in the following reaction.

$$(CH_3)_3 C - HgCl + OOOOO$$

$$(CH_3)_3C$$
 $(CH_3)_3$
 $(CH_3)_3$

[Turn over

2