M. Sc. Chemistry Examination, 2017

(4th Semester)

Organic Chemistry (Special)

Paper - XIII-O

Time: Two hours
Full Marks : 50
(25 marks for each unit)
Use a separate answerscript for each unit.
UNIT - O-4131

1. Draw the structure of the product(s) with proper stereochemistry (if any) of the following reactions and explain with mechanism (Answer anyfive). $2 \frac{1}{2} 5$
a)

$\frac{\text { Cat. }\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}}{\mathrm{~h} v}$
b)

c)

d)

e)

f)

i) $\mathrm{Me} \mathrm{Li}, \mathrm{CS}_{2}$, MeI
$\xrightarrow\left[\text { ii) } \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}(\mathrm{Cat} \text {) }]{ }\right.$ $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux
B) Molecule \mathbf{E} acting as a host for molecule \mathbf{F}.

E: R = 9-Anthryl

F
ii) Explain why α-cyclodextrin and β-cyclodextrin show different effects on the rate of cycloaddition of cyclopentadiene and acrylonitrile.
$(12)+1$
b) The following two compounds behave differently towards tributyltin hydride in presence of AIBN(cat.) under refluxing in toluene. Draw the structure of the product(s) and explain your answer.

3

c)

Discuss the mechanism of the above reaction.

ii) Write the structure of the molecular self-assembly formed by hydrogen bonding interaction involving three molecules of 5,5-diethylbarbituric acid and three molecules of 2, 4, 6-triamino-5-nbutylpyrimidine.
$1 \frac{1}{2}+1 \frac{1}{2}$
b) Give one example of each of the following types of receptors (attempt any three)
i) Two-dimensional molecular cleft.
ii) Hemispherand
iii) 3-Cryptand
iv) Azide binding cryptand.
c) i) Show how a receptor synthesized from the following two compounds can effectively catalyze the exchange of $\mathrm{C}-2$ hydrogens of quinuclidinone (1-azabicyclo [2.2.2] octan-3-one) in CDCl_{3} saturated with $\mathrm{D}_{2} \mathrm{O}$.
ii)

UNIT - O-4132

3. Attempt any four of the following questions:
a) i) Give one method for determination of σ_{α}^{+}and σ_{β}^{+} values of thiophene and furan.
ii) In the pKa vs σ plot for 3-/4-substituted pyridines, the σ values for $4-\mathrm{NO}_{2}, 4-\mathrm{CN}$ and $4-\mathrm{CO}_{2} \mathrm{Et}$ do not show good correlation. Comment on the nature of deviation and give suitable explanation. $2 \frac{1}{2}+1 \frac{1}{2}$
b) Discuss the approach of Taft for determination of σ^{*} values (which are measures of inductive effect) of different substituents.

4
c)
trans-2-(m-and p-substituted benzoyloxy-)-cyclohexyl p-toluenesulphonates, in acetic acid in the presence of acetate ions, yield a linear plot with σ with a ρ value of -1.00 . If the carbonyl oxygen is labelled with ${ }^{18} \mathrm{O}$, and the reaction product is reduced
with $\mathrm{LiA} / \mathrm{H}_{4}$, the trans-1, 2-cyclohexanediol retains 50% of the activity.
Comment on the mechanism of the reaction.
d) i) The Lossen rearrangement of the potassium salts of acyl hydroxamic acids

yields the following ρ values:
$\mathrm{R}^{1}=\mathrm{XC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5}: \rho=-2.59$
$\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{XC}_{6} \mathrm{H}_{4}: \rho=+0.87$
Show how the mechanism is consistent with these results.
ii) The $\log \mathrm{k}$ for the following thermal elimination reaction shows a good correlation with σ^{+}with a ρ value of -0.66 .

Comment on the nature of the transition state of the reaction.
$2 \frac{1}{2}+1 \frac{1}{2}$
e) i) A Hammett plot for the second order rate constants of urethane formation from ethyl chloroformate and $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ in anhydrous acetone has a ρ value of -5.56 for $\mathrm{X}=p-\mathrm{OCH}_{3}, p-\mathrm{CH}_{3}, m-\mathrm{CH}_{3}$ and H using σ values ; a ρ value of -1.57 is found for $\mathrm{x}=p-\mathrm{Br}, m-\mathrm{Cl}, m-\mathrm{NO}_{2}, p-\mathrm{COOC}_{2} \mathrm{H}_{5}$ and $p-\mathrm{NO}_{2}$ using σ^{-}where appropriate. Comment on the mechanism of the reaction.
ii) Explain how the magnitudes of the ρ values for $\log \mathrm{f}$ $v s \sigma^{+}$plot for aromatic electrophilic substitution reactions gives an idea about the nature of the transition states of the reactions ($\mathrm{f}=$ partial rate factor). $2 \frac{1}{2}+1 \frac{1}{2}$
4. Attempt any three of the following questions :
a) i) Show how the following molecule can act as a host for S-tryptophan.

$\mathrm{R}^{1}=2-$ Naphthyl
d) Identify [A], [B] and [C]. Discuss the mechanism for the radical step only. $1 \frac{1}{2}+1 \frac{1}{2}$

OR
Discuss the mechanism of the following reaction.

e) Predict the product in the following reactions and explain with mechanism (answer any one).

2

i)

ii) Show how a pentaprotonated form of the following compound catalyzes the conversion of ATP to ADP.
$1 \frac{1}{2} 2$

d) i) Show the molecular interactions in the following cases:
A) Molecule \mathbf{D} acting as a host for urea.

g)

h)

2. a) Account for the stereo chemical preference of the cisisomer over the trans-isomer in the following reaction.

2
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{HgCl}+$

