M. Sc. Chemistry Examination, 2017 (1st Semester) ### THEORETICAL CHEMISTRY ### Paper - I Time: Two hours Full Marks: 50 (25 marks for each unit) Use a separate answerscript for each unit. ### UNIT - U- 1011 | | Answer any two questions | _ | |------------|--|---------------------| | l. (a) | Explain whether the following state functions are acceptable or not in the given ranges. | 3 | | (b)
(c) | $i)\sin^{-x}(-1, +1)$ $ii)$ $e^{- x }(-\infty, +\infty)$
Find out the commutator of $[\hat{P}_x, \hat{X}^n]$ where the terms have their usual meaning.
Show that the commutator of $[\hat{L}_y, \hat{L}_z]$ can be expressed in terms of \hat{L}_x , where the symbols have their usual meaning. | $2 \\ 2\frac{1}{2}$ | | (d) | If two operators \hat{A} and \hat{B} have a common eigenfunction, ψ with the eigenvalues 'a' and 'b' respectively, Prove that the two operators commute with each other. | 2 | | (e) | Show that the Hamiltonian operator is always hermitian. | 3 | | 2. (a) | Prove that the product of the measure of spreads of two incompatible observables P and Q whose operators do not commute, obeys Heisenberg's uncertainty principle. | $4\frac{1}{2}$ | | (b) | Derive the selection rule for allowed transition for a rigidly rotating diatomic molecule (using the identity $(2J+1)XP_J^{[M]}(X) = (J- M +1)P_{J-1}^{[M]}(X) + (J+ M)P_{J-1}^{[M]}(X)$, where the symbols have their usual meaning). | 3 | | (c) | Define step up and step down operators in angular momentum of a particle and explain why they are called so. | 2+3 | | 3. (a) | Graphically represent the radial part of the wave functions for 1s, 2s and 3s states of H-atom | 3 | | (b) | Construct Pauli spin matrices for spin angular momentum operator \hat{S}_x , \hat{S}_y & \hat{S}_z | 3 | | (c) | State the independent particle model in many electron atomic systems. Show that the total energy of such a system is the sum of the individual particle energy, assuming the total wave function is the product of individual wave function. | $3\frac{1}{2}$ | | (d) | Construct wave functions for the lowest excited state of He(1s2s) atom satisfying Pauli exclusion principle. | 3 | #### **UNIT - U- 1012** - Construct the character table for C_{4v} point group. Assign appropriate Mulliken symbols to 4. the irreducible representations. Complete Area III and Area IV with proper justification. 7 5. (a) Find out the SALCs for hydrogen 1s orbitals in ammonia (NH₃) 4 or (b) Write a reducible representation for the motional degrees of freedom of pyridine (point group C_{2v}) by Cartesian coordinate method. Decompose the representation into the irreducible representations contained in it. 4 6. (a) Identify the point groups of the following molecules 5 (i) Cis $[PtCl_2(NH_3)_2]$ (ii) Trans $[Co(H_2O)_4Cl_2]^+$ (iii) SF₄ (iv) PCl_3F_2 (v) XeF₄ Answer any three of the followings 2×3 (a) Prove that, if in a group, an element A is conjugate with two other elements B and C separately, then B and C are conjugate with each other. - (b) Show that any group of order 3 should be an Abelian group. - (c) The asymmetric stretching mode of the H_2O belongs to the irreducible representation A_2 . Justify or contradict. - (d) Gather all the symmetry elements present in a tetrahedron. - (e) Find out the matrix representation for $C_3(Z)$ element. 8. (a) Find out the direct product $\mathbf{E}\mathbf{x}\mathbf{E}\mathbf{x}\mathbf{A_2}$ in C_{3v} point group and decompose it into the irreducible representations contained in it. or (b) Find out the direct product $\mathbf{Eg} \times \mathbf{Eg}$ in O_h point group and decompose it into the irreducible representations contained in it. Use following character tables, if required to answer the above questions. # (i) Character table for C_{2v} | C _{2v} | E | C ₂ | σ_{v} | $\sigma_{\rm v}^{\prime}$ | | | |-----------------|---|----------------|--------------|---------------------------|-------------------|-----------------| | A ₁ | 1 | 1 | 1 | 1 | Z | x^2, y^2, z^2 | | A_2 | 1 | 1 | -1 | -1 | R _z | ху | | B ₁ | 1 | -1 | 1 | -1 | x, R _y | XZ | | $\mathbf{B_2}$ | 1 | -1 | -1 | 1 | y, R _x | yz | ### (ii) Character table for C_{3v} | C _{3v} | E | 2C ₃ | $3\sigma_{v}$ | | |-----------------|---|-----------------|---------------|--------------------| | A_1 | 1 | 1 | 1 | z | | $\mathbf{A_2}$ | 1 | 1 | -1 | R_z | | E | 2 | 1- | 0 | $(x,y), (R_x,R_y)$ | # (iii) Character table for Oh | Oh | E | 8C ₃ | 6C ₂ | 6C ₄ | 3C ₂ | i | 6S ₄ | 8S ₆ | 3 _o h | 6σd | |---------------------------|-----|-----------------|-----------------|-----------------|-----------------|----|-----------------|-----------------|------------------|-----| | A _{1g} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | A _{2g} | 1 , | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | | Eg | 2 | -1 | 0 | 0 | 2 | 2 | 0 | -1 | 2 | 0 | | Tig | 3 | 0 | -1 | 1 | -1 | 3 | 1 | 0 | -1 | -1 | | T _{2g} | 3 | 0 | 1 | -1 | -1 | 3 | -1 | 0 | -1 | 1 | | A _{1u} | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | A _{2u} | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | | $\mathbf{E}_{\mathbf{u}}$ | 2 | -1 | 0 | 0 | 2 | -2 | 0 | 1 | -2 | 0 | | Tlu | 3 | 0 | -1 | 1 | -1 | -3 | -1 | 0 | 1 | 1 | | T _{2u} | 3 | 0 | 1 | -1 | -1 | -3 | 1 | 0 | 1 | -1 |