M. Sc. Chemistry Examination, 2017

(1st Semester)

THEORETICAL CHEMISTRY

Paper - I

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - U- 1011

	Answer any two questions	_
l. (a)	Explain whether the following state functions are acceptable or not in the given ranges.	3
(b) (c)	$i)\sin^{-x}(-1, +1)$ $ii)$ $e^{- x }(-\infty, +\infty)$ Find out the commutator of $[\hat{P}_x, \hat{X}^n]$ where the terms have their usual meaning. Show that the commutator of $[\hat{L}_y, \hat{L}_z]$ can be expressed in terms of \hat{L}_x , where the symbols have their usual meaning.	$2 \\ 2\frac{1}{2}$
(d)	If two operators \hat{A} and \hat{B} have a common eigenfunction, ψ with the eigenvalues 'a' and 'b' respectively, Prove that the two operators commute with each other.	2
(e)	Show that the Hamiltonian operator is always hermitian.	3
2. (a)	Prove that the product of the measure of spreads of two incompatible observables P and Q whose operators do not commute, obeys Heisenberg's uncertainty principle.	$4\frac{1}{2}$
(b)	Derive the selection rule for allowed transition for a rigidly rotating diatomic molecule (using the identity $(2J+1)XP_J^{[M]}(X) = (J- M +1)P_{J-1}^{[M]}(X) + (J+ M)P_{J-1}^{[M]}(X)$, where the symbols have their usual meaning).	3
(c)	Define step up and step down operators in angular momentum of a particle and explain why they are called so.	2+3
3. (a)	Graphically represent the radial part of the wave functions for 1s, 2s and 3s states of H-atom	3
(b)	Construct Pauli spin matrices for spin angular momentum operator \hat{S}_x , \hat{S}_y & \hat{S}_z	3
(c)	State the independent particle model in many electron atomic systems. Show that the total energy of such a system is the sum of the individual particle energy, assuming the total wave function is the product of individual wave function.	$3\frac{1}{2}$
(d)	Construct wave functions for the lowest excited state of He(1s2s) atom satisfying Pauli exclusion principle.	3

UNIT - U- 1012

- Construct the character table for C_{4v} point group. Assign appropriate Mulliken symbols to 4. the irreducible representations. Complete Area III and Area IV with proper justification. 7 5. (a) Find out the SALCs for hydrogen 1s orbitals in ammonia (NH₃) 4 or (b) Write a reducible representation for the motional degrees of freedom of pyridine (point group C_{2v}) by Cartesian coordinate method. Decompose the representation into the irreducible representations contained in it. 4 6. (a) Identify the point groups of the following molecules 5 (i) Cis $[PtCl_2(NH_3)_2]$ (ii) Trans $[Co(H_2O)_4Cl_2]^+$ (iii) SF₄ (iv) PCl_3F_2 (v) XeF₄ Answer any three of the followings 2×3 (a) Prove that, if in a group, an element A is conjugate with two other elements B and C separately, then B and C are conjugate with each other.
 - (b) Show that any group of order 3 should be an Abelian group.
 - (c) The asymmetric stretching mode of the H_2O belongs to the irreducible representation A_2 .

 Justify or contradict.
 - (d) Gather all the symmetry elements present in a tetrahedron.
 - (e) Find out the matrix representation for $C_3(Z)$ element.

8. (a) Find out the direct product $\mathbf{E}\mathbf{x}\mathbf{E}\mathbf{x}\mathbf{A_2}$ in C_{3v} point group and decompose it into the irreducible representations contained in it.

or

(b) Find out the direct product $\mathbf{Eg} \times \mathbf{Eg}$ in O_h point group and decompose it into the irreducible representations contained in it.

Use following character tables, if required to answer the above questions.

(i) Character table for C_{2v}

C _{2v}	E	C ₂	σ_{v}	$\sigma_{\rm v}^{\prime}$		
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	XZ
$\mathbf{B_2}$	1	-1	-1	1	y, R _x	yz

(ii) Character table for C_{3v}

C _{3v}	E	2C ₃	$3\sigma_{v}$	
A_1	1	1	1	z
$\mathbf{A_2}$	1	1	-1	R_z
E	2	1-	0	$(x,y), (R_x,R_y)$

(iii) Character table for Oh

Oh	E	8C ₃	6C ₂	6C ₄	3C ₂	i	6S ₄	8S ₆	3 _o h	6σd
A _{1g}	1	1	1	1	1	1	1	1	1	1
A _{2g}	1 ,	1	-1	-1	1	1	-1	1	1	-1
Eg	2	-1	0	0	2	2	0	-1	2	0
Tig	3	0	-1	1	-1	3	1	0	-1	-1
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1
$\mathbf{E}_{\mathbf{u}}$	2	-1	0	0	2	-2	0	1	-2	0
Tlu	3	0	-1	1	-1	-3	-1	0	1	1
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1