Ex/FM/5.6/44/2017

BACHELOR OF SCIENCE EXAMINATION, 2017

(3rd Year, 1st Semester)

MATHEMATICS (Honours)

Unit - 5.6 (c)

(Mathematical Modelling - I)

Full Marks: 50 Time: Two Hours

All questions carry equal marks.

Use a separate Answer-Script for each part.

Part-I

(30 marks)

Answer any *three* questions.

 3×10

- 1. (a) Define the following:
 - (i) Critical point,
 - (ii) Spiral point.
 - (b) Consider a linear system $\dot{X} = AX$, $X \in \mathbb{R}^2$ with $\delta = |A|$ and $\tau = \operatorname{trace}(A)$. Discuss with suitable figures [*Turn over*]

the classification of critical points for different values of δ and τ . 4+6

2. (a) Determine the nature of the critical point(s) of the following system and discuss its stability:

(i)
$$\frac{dx}{dt} = 2x + 4y$$
; $\frac{dy}{dt} = -2x + 6y$

(ii)
$$\frac{dx}{dt} = x - y$$
; $\frac{dy}{dt} = x^2 - 1$.

(b) Define limit cycle of the system

$$\frac{dx}{dt} = P(x, y)$$
; $\frac{dy}{dt} = Q(x, y)$.

- (c) Write down the hypothesis for regulation of population growth in density dependent population. 4+3+3
- 3. What do you mean by functional responses and numerical responses? Discuss in brief the Holling types functional responses of a prey-predator system.
- 4. Derive the explicit solution of a single species logistic growth model of the form $\frac{dN}{dt} = rN\left(1 \frac{N}{K}\right)$. Also explain the result graphically for different values of K.

[Turn over]

 With suitable assumptions, write down the classical Lotka-Volterra prey-predator model and discuss the dynamical behaviour of the system about the equilibrium point.

Part - II

(20 marks)

Answer any two questions.

- 6. (a) Write down the three dimensional deterministic host pathogen model with basic assumptions consisting of a host population.
 - (b) Derive the endemic equilibrium point of your formulating mathematical model.
 - (c) Give its stochastic approach and describe the transition state.
- 7. (a) From the model $\frac{dN}{dt} = rN(t)$, where N(t) is the population size at a time t, discuss how population related with the parameter r.
 - (b) Discuss about the regulatory factors of a particular individual in a density dependent population model. 3

[Turn over]

- 8. (a) With suitable assumption formulate a general epidemiological (SIR) model.
 - (b) Define Basic Reproduction Ratio and give its physical classification with your formulated mathematical model.

6

3/7 - 55