Bachelor of Science Examination, 2017

(3rd Year, 1st Semester)
MATHEMATICS (Honours)
Unit-5.6(b)

(Discrete Mathematics - I)

Full Marks : 50
Time : Two Hours
The figures in the margin indicate full marks.
Use a separate answer-script for each part.
(Symbols have usual meanings, if not mentioned otherwise)

Part I I

(30 marks)
Attempt the questions as follows.

1. Answer any two:
(a) Prove that for any graph G with six points, G or \bar{G} contains a triangle.
(b) Define eulerian graph. If the set of lines of a connected graph G can be partitioned into cycles, then prove that G is eulerian.
[Turn over]
(c) Define n-cube. Find the number of points and lines in an n-cube.
2. Answer any two:
(a) Define the terms coboundary and cocycle. Prove that a cocycle is just a minimal nonzero coboundary.
(b) Prove that there always exists a graph G such that $\kappa(G)=a, \lambda(G)=b$ and $\delta(G)=c$ where a, b, c are integers with $0<a \leq b \leq c$.
(c) Define outerplanar graph. Prove that a maximal outerplane graph with $p \geq 3$ vertices lying on the exterior face contains $p-2$ interior faces.
3. Answer any one :
(a) If G is a (p, q)-graph with $p \geq 3$ and for every pair of u and v of nonadjacent points $\operatorname{deg} u+\operatorname{deg} v \geq p$, then prove that G is Hamiltonian.
(b) Prove that any 3-connected planar graph is uniquely embeddable on the plane.
$6+4=10$

[3]

Part - II

(20 marks)

Attempt any four questions.

4. Prove that if F_{n} is the nth Fibonacci number, then

$$
F_{n}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right\}
$$

for all integer $n \geq 0$.
5. Enumerate r-combinations with unlimited repetitions. (assuming there are n distinct objects).
6. Prove that
(i) $\left({ }^{n} C_{0}\right)^{2}+\left({ }^{n} C_{1}\right)^{2}+\ldots+\left({ }^{n} C_{r}\right)^{2}+\ldots+\left({ }^{n} C_{n}\right)^{2}={ }^{2 n} C_{n}$
(ii) ${ }^{m} C_{0}{ }^{n} C_{0}+{ }^{m} C_{1}{ }^{n} C_{1}+\ldots+{ }^{m} C_{n}{ }^{n} C_{n}={ }^{m+n} C_{n}$ for integers $m \geq n \geq 0$.
7. Define devangements. Find a expression for devangements for the set $\{1,2, \ldots, n\}$. 5
[Turn over]
8. Prove that
(i) $F_{0}+F_{2}+F_{4}+\ldots+F_{2 n}=F_{2 n+1}$ and
(ii) $F_{0}^{2}+F_{1}^{2}+F_{2}^{2}+\ldots+F_{n}^{2}=F_{n} F_{n}$
where F_{n} is the nth Fibonacci number.
9. Solve the recurrence relation

$$
a_{n}-9 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0 \text { for } n \geq 3 .
$$

Find a particular solution if $a_{0}=0, a_{1}=1$ and $a_{2}=10.5$

