Ex/FM/5.6/44/2017

BACHELOR OF SCIENCE EXAMINATION, 2017

(3rd Year, 1st Semester)

MATHEMATICS (Honours)

Unit - 5.6 (b)

(Discrete Mathematics - I)

Full Marks : 50

Time : Two Hours

The figures in the margin indicate full marks.

Use a separate answer-script for each part.

(Symbols have usual meanings, if not mentioned otherwise)

Part - I

(30 marks)

Attempt the questions as follows.

- 1. Answer any *two* : $5 \times 2 = 10$
 - (a) Prove that for any graph G with six points, G or \overline{G} contains a triangle.
 - (b) Define eulerian graph. If the set of lines of a connected graph G can be partitioned into cycles, then prove that G is eulerian.

[Turn over]

3/8 - 75

- [2]
- (c) Define *n*-cube. Find the number of points and lines in an *n*-cube.
- 2. Answer any *two* : $5 \times 2 = 10$
 - (a) Define the terms coboundary and cocycle. Prove that a cocycle is just a minimal nonzero coboundary.
 - (b) Prove that there always exists a graph G such that κ(G) = a, λ(G) = b and δ(G) = c where a, b, c are integers with 0 < a ≤ b ≤ c.</p>
 - (c) Define outerplanar graph. Prove that a maximal outerplane graph with $p \ge 3$ vertices lying on the exterior face contains p-2 interior faces.
- 3. Answer any *one* :
 - (a) If G is a (p, q)-graph with $p \ge 3$ and for every pair of u and v of nonadjacent points $\deg u + \deg v \ge p$, then prove that G is Hamiltonian.
 - (b) Prove that any 3-connected planar graph is uniquely embeddable on the plane. 6+4=10

[Turn over]

10

3/8 - 75

[3]

Part - II

(20 marks)

Attempt any four questions.

4. Prove that if F_n is the *n*th Fibonacci number, then

$$F_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right\}$$

for all integer $n \ge 0$.

- Enumerate *r*-combinations with unlimited repetitions.
 (assuming there are *n* distinct objects).
- 6. Prove that

(i)
$$\binom{n}{C_0}^2 + \binom{n}{C_1}^2 + \dots + \binom{n}{C_r}^2 + \dots + \binom{n}{C_n}^2 = {}^{2n}C_n$$

- (ii) ${}^{m}C_{0}{}^{n}C_{0} + {}^{m}C_{1}{}^{n}C_{1} + \dots + {}^{m}C_{n}{}^{n}C_{n} = {}^{m+n}C_{n}$ for integers $m \ge n \ge 0.$ 5
- 7. Define devangements. Find a expression for devangements for the set {1, 2, ..., n}.

[Turn over]

5

3/8 - 75

[4]

8. Prove that

- (i) $F_0 + F_2 + F_4 + \ldots + F_{2n} = F_{2n+1}$ and
- (ii) $F_0^2 + F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_n$

where F_n is the *n*th Fibonacci number.

9. Solve the recurrence relation

$$a_n - 9a_{n-1} + 26a_{n-2} - 24a_{n-3} = 0$$
 for $n \ge 3$.

Find a particular solution if $a_0 = 0$, $a_1 = 1$ and $a_2 = 10$. 5

5