Bachelor of Science Examination, 2017

(Final Year, 1st Semester)

MATHEMATICS (Honours)

Unit-5.6(a)

(Mathematical Physics and Relativity - I)
Full Marks : 50
Time : Two Hours

Use a separate Answer-script for each part.
The figures in the margin indicate full marks.

Part - I

Answer any five questions.

1. State Coulomb's law of Electrostatics. Write an expression for the electric field for a system of point charges q_{i}, located at $x_{i}, i=1,2,3, \ldots, n$. 5
2. Obtain the work done in moving a test charge q from one point to another point in the presence of an electric field E. Hence define the scalar potential of the field.

[2]

3. Point charges of magnitude $3 \times 10^{-9} \mathrm{C}$ are situated at each of three corners of a square whose side is 15 cm . Find the electric field at the vacant corner point of the square. 5
4. State Gauss theorem. By applying Gauss theorem find the electric field at a point due to an isolated uniformly charged sphere.
5. Define electric dipole. Find the electric field at a point p due to the presence of a dipole formed by the charges $+q$ and $-q$ placed at a distance l apart. 5
6. Define electrical image. Find by the method of images, the potential at a point on the surface of a sphere which is earthed due to a point charge placed near the sphere. 5
7. State Biot-Savart law and hence write the general form of the magnetic induction due to the presence of current density $J(x)$.

Part - II

Answer any five questions.
8. Write a short note on Relativity of Simultaneity.
9. What is Time dilation ? Give a real example of Time dilation.
[Turn over]

[3]

10. A circular ring moves parallel to its plane relative to an inertial frame S. Show that the shape of the ring relative to S is an ellipse.
11. Find the relativistic acceleration transformation (x component only).
12. A particle of rest mass m_{0} describes the trajectory

$$
x=f(t), y=g(t), z=0
$$

in an inertial frame S. Find the four velocity components. Also show that norm of the four velocity is $-c^{2}$.
13. What is relativistic mass ? Find the velocity of the particle for which the relativistic mass of the particle exceeds its rest mass by a given fraction f.
14. Show that Minkowski force and four velocity vector are orthogonal to each other. Using this find the forth component of Minkowski force.

