Bachelor of Science Examination, 2017

(3rd Year, 1st Semester)

MATHEMATICS (Honours)

Unit-5.5(b)
[Number Theory]
Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
Answer Question No. 1 and any four from the rest.

1. Answer any ten :
(a) What is the remainder on division of 2^{1000} by 13 ?
(b) Using unique factorisation of positive integers into primes prove that $\log _{6} 9$ is irrational.
(c) Determine the smallest positive integer having only 10 positive divisors.
(d) Determine the possible gcd's of a and $a+10$ for any positive integer a.
(e) Determine the integers n such that the congruence $x^{2} \equiv n(\bmod 3)$ has solution.
(f) The congruence $x^{3}+x^{2}+1 \equiv 0(\bmod 90)$ has no solution - Justify.
(g) $x^{2}+y^{2}=43$ cannot have any integral solution Explain.
(h) Suppose $m>2$ is any integer. Then $1^{2}, 2^{2}, \ldots, m^{2}$ cannot be a complete residue system modulo m Explain.
(i) Find the number of positive integers $x(<13)$ such that $x^{12}=1$ but $x^{m} \neq 1$ for any $1<m<12$.
(j) That the congruences $x^{2} \equiv-2(\bmod 71)$ and $x^{2} \equiv-2$ $(\bmod 79)$ have no solution - can be explained by a single argument - Explain.
(k) 242 cannot divide $\lfloor 241+1$ - Explain.
2. (a) Suppose p is a prime. Prove that $x^{2} \equiv-1(\bmod p)$ has solutions if and only if $p=2$ or $p \equiv 1(\bmod 4)$.

[3]

(b) Find the least positive integer x such that $2 x \equiv 3(\bmod 7), 5 x \equiv 2(\bmod 11), 6 x \equiv 5(\bmod 13)$.
(c) Show that $n^{2}+1$ is not divisible by 23 for any integer n.
$4+5+1=10$
3. (a) (i) Define Euler's phi function.
(ii) Suppose n is a positive integer. Prove that the set $\{a: a$ is a solution of $\varphi(x)=n\}$ has a lower bound as well as an upper bound.

Hence conclude that $\varphi(x)=n$ has atmost a finite number of solutions.
(b) Prove that $\varphi(x)=14$ has no solution. $\quad(1+6)+3=10$
4. (a) (i) Define Mersenne number M_{x} for any prime number x.
(ii) Suppose n is a positive integer such that $p=4 n+3$, $q=8 n+7$ are primes. Prove that q divides the Mersenne number M_{p}. Hence provide two composite Mersenne numbers.
(b) State the Gaussian quadratic reciprocity law. What does it say about the solvability of the congruences $x^{2} \equiv p(\bmod q), \quad x^{2} \equiv q(\bmod p)$ for distinct odd primes p and q ? $\quad(1+6)+(1+2)=10$
5. (a) (i) Define Legendre symbol $\left(\frac{a}{p}\right)$.
(ii) Prove that for an odd prime p,

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p) \text { and }\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right) .
$$

(b) Suppose a is a primitive root of an odd prime p. Show that
(i) any even power of a is a quadratic residue modulo p,
(ii) any odd power of a is quadratic nonresidue modulo p.

$$
(2+4)+(2+2)=10
$$

6. (a) Suppose p is a prime and n is a positive integer such that $p>n$. Use Wilson's theorem to prove that $(n-1)!(p-n)!\equiv(-1)^{n}(\bmod p)$.

[5]

(b) Solve $x^{3}-2 x+6 \equiv 0(\bmod 125)$.
(c) Reduce the congruence $x^{15}-x^{10}+4 x-3 \equiv 0(\bmod 7)$ to a congruence of degree $\leq 6 . \quad 4+4+2=10$
7. (a) Find all primes p such that $x^{2} \equiv 13(\bmod p)$ has a solution.
(b) Find a system of congruences

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right) \\
& x \equiv a_{3}\left(\bmod m_{3}\right)
\end{aligned}
$$

with $\left(m_{i}, m_{j}\right)=1$ for all $i \neq j(1 \leq i, j \leq 3)$ such that it is equivalent to the following system of congruences.

$$
\begin{aligned}
& x \equiv-2(\bmod 12) \\
& x \equiv 6(\bmod 10) \\
& x \equiv 1(\bmod 15)
\end{aligned}
$$

