## Ex/FM/5.5/T/43/2017

## Bachelor of Science Examination, 2017

(Final Year, 1st Semester)
MATHEMATICS (Honours)

## Unit-5.5(a)

## [Mechanics III (Rigid Dynamics)]

Full Marks : 50<br>Time : Two Hours

The figures in the margin indicate full marks.
(Symbols/Notations have their usual meanings.)
Answer any five questions.

1. Show that the moment of inertia of a regular hexagon about any straight line through its centre in the plane of the hexagon is $\frac{5 M c^{2}}{24}$, where $c$ is the length of each side, $M$ is the mass of the hexagon.
2. (a) If the vertical angle of a cone is $90^{\circ}$, the point at which a generator is a principal axis divides the generator in the ratio $3: 7$.
(b) A uniform square lamina is bounded by the axes $x$ and $y$ and the lines $x=2 c, y=2 c$ and a corner is cut off by the line $\frac{x}{a}+\frac{y}{b}=2$. Show that the principal axes at the centre of the square are inclined to the axis of $x$ at angles given by
$\tan 2 \theta=\frac{a b-2(a+b) c+3 c^{2}}{(a-b)(a+b-2 c)}$.
3. (a) Show that the centre of suspension and centre of oscillation are convertible.
(b) A sphere of radius " a " is suspended by a fine wire from a fixed point at a distance " $l$ " from the centre, show that the time of a small oscillation is given by
$2 \pi \sqrt{\frac{5 l^{2}+2 a^{2}}{5 l g}}\left(1+\frac{1}{4} \sin ^{2} \frac{\alpha}{2}\right)$, where $\alpha$, represents the amplitude of vibration.
4. (a) A body of mass $M$ is moving in two dimensions. Find the kinetic energy in terms of the motion of the centre of inertia and motion relative to centre of inertia.

## [ 3 ]

(b) A circular cylinder whose centre of inertia is at a distance ' $c$ ' from the axis rolls on a horizontal plane. If it is just started from a position of unstable equilibrium, show that the normal reaction of the plane when the centre of mass is in its lowest position is $\left[1+\frac{4 c^{2}}{(a-c)^{2}+k^{2}}\right]$ times its weight, where ' $k$ ' is the radius of gyration about the axis through the centre of mass.
5. A uniform rod of length ' $2 a$ ' and mass $M$ slides down in a vertical plane its ends begin in contact with two smooth planes, one horizontal and other vertical. It starts from rest at an angle ' $\alpha$ ' with the horizon, find the horizontal velocity when the upper end leaves the wall, also find the angular velocity when the rod reaches the horizontal plane.
6. A thin uniform rod has one end attached to a smooth hinge and is allowed to fall from a horizontal position. Show that the horizontal strain on the hinge is greatest when the rod is inclined at an angle $45^{\circ}$ to the vertical and that the vertical strain is then $11 / 8$ times the weight of the rod.
7. (a) A uniform circular board, of mass ' $M$ ' and radius ' $a$ ', is placed on a perfectly smooth horizontal plane and free to rotate about a vertical axis through its centre ; a man
[Turn over]
[ 4 ]
of mass ' m ' walks round the edge of the board whose upper surface is rough enough to prevent his sliding; when he has walked completely round the board to his starting point, show that the board has turned through an angle $\frac{M}{M+2 m} 4 \pi$.
(b) A uniform rod of length ' $2 a$ ', which has one end attached to a fixed point by a light inextensible string of length $\frac{5 a}{12}$, is performing small oscillations in a vertical plane about its position of equilibrium. Find its position at any time, and show that the periods of its principal oscillations are $2 \pi \sqrt{\frac{5 a}{3 g}}$ and $\sqrt{\frac{a}{3 g}}$.

