## Bachelor of Science Examination, 2017

## (Final Year, 1st Semester)

## MATHEMATICS (Honours)

## Paper - 5.4

(Analysis - III)
Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.

## Part I I

(25 Marks)
(Symbols / Notations have their usual meaning.)
Answer any five questions.
$5 \times 5=25$

1. Let $(X, d)$ be a metric space and $C_{b}(X, \mathbb{R})$ denote the set of all continuous bounded real-valued functions defined on $X$, equipped with the uniform metric,
$d(f, g)=\sup \{|f(x)-g(x)|: x \in X\}$.

Show that $C_{b}(X, \mathbb{R})$ is a complete metric space.
2. Show that a mapping $f:(X, d) \rightarrow(Y, \rho)$ is continuous on $X$, if and only if $f^{-1}(G)$ is open in $X$ for all open subset $G$ of $Y$. 5
3. Prove that every compact metric space is separable. 5
4. Suppose $T:(X, d) \rightarrow(X, d)$ be a contraction mapping of the complete metric space $(X, d)$. Then prove that $T$ has a unique fixed point.
5. State and Prove Baire Category Theorem.
6. Show that every sequentially compact metric space $(X, d)$ is totally bounded.
7. (a) Let $\mathbb{N}$ denote the set of natural numbers. Define $d(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right|, \quad \forall m, n \in \mathbb{N}$. Then examine if $(\mathbb{N}, d)$ is complete or not.
(b) Let $\mathbb{Z}$ denote the set of integers in the metric space $(\mathbb{R}, d), d$ denote the usual metric. Is $\mathbb{Z}$ compact ? - Justify.

## [ 3 ]

## Part - II

(25 Marks)
(Notations have their usual meaning.)
Answer any five questions. $\quad 5 \times 5=25$
8. What do you mean by uniform convergence of an infinite series of functions? If $\sum_{n} u_{n}(x)$ converges pointwise to the sum function $f(x)$ and each $u_{n}(x)$ is continuous then is $f(x)$ also continuous? If not then give a counter example of it. State and prove the condition for which $f(x)$ will also be continuous.
9. State and prove Weierstrass's $M$-test for uniform convergence.
10. Let the power series $\sum_{n} a_{n} Z^{n}$ converges at $Z=Z_{1}$ and diverges for $Z=Z_{2}\left(\left|Z_{1}\right|<\left|Z_{2}\right|\right)$. Show that $\exists$ a positive real no. ' $r$ ' such that the series converges absolutely for $|Z|<r$ and diverges if $|Z|>r$.
11. Show that the error term in Taylor's formula can be expressed as

$$
E_{n}(x)=\frac{1}{n!} \int_{a}^{x} f^{n+1}(t)(x-t)^{n} d t
$$

Also state the condition for which the Taylor's series generated by $f(x)$ at a converges to $f(x)$ in some open interval $(a-r, a+r)$.
12. State and prove Bessel's inequality relating the Fourier coefficients of a Fourier series.
13. Obtain the Fourier sine series for the function $f(x)=x(\pi-x)$ in $(0, \pi)$. What is the sum of the series in $(\pi, 2 \pi)$ ? Also show that
(i) $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\ldots \infty=\pi^{3} / 32$ and
(ii) $\frac{1}{1^{6}}-\frac{1}{3^{6}}+\ldots \infty=\pi^{6} / 960$.

## [ 5 ]

14. Starting from the power series expansion for $\frac{1}{1+x^{2}}(|x|<1)$, derive the power series expansion of $\tan ^{-1} x$. Hence obtain the sum of the infinite series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$5

