Bachelor of Science Examination, 2017

(Final Year, 1st Semester)
MATHEMATICS (Honours)
Paper - 5.3
(Algebra III)
Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
Notations have their usual meanings.
Answer any five questions.

1. (i) For which real number x, the vectors x and 1 are linearly independent in $\mathbb{R}(\mathbb{Q})$?
(ii) Under what conditions on a the vectors $(1-a, 1+a)$ and $(1+a, 1-a)$ are linearly independent in $\mathbb{R}^{2}(\mathbb{Q})$?
(iii) Do there exist two bases in \mathbb{C}^{4} such that the only vectors common to them are $(0,0,1,1)$ and $(1,1,0,0)$?

[2]

(iv) Prove that the set V defined as follows

$$
V=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}, a+b+c+d=0\right\}
$$

is a subspace of $M_{2 \times 2}(R)$. Find a basis for the space.

$$
2+2+2+4
$$

2. (i) Find the kernel of the differential operator $D: P_{4}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined as $D(p(x))=p^{\prime}(x) .4$
(ii) Determine the eigenvalues and their algebraic and geometric multiplicities for the following matrix :

$$
\left(\begin{array}{ccc}
2 & 6 & -1 \tag{6}\\
0 & 1 & 3 \\
0 & 3 & 1
\end{array}\right)
$$

3. (i) If A is a matrix of rank one then show that trace A is an eigenvalue of A. Hence determine the eigenvalues of the $n \times n$ matrix $A=\left(a_{i j}\right)$, with $a_{i j}=1$ for all i and j.

[3]

(ii) Let N be a 2×2 matrix such that $N^{2}=0$. Then show that either $N=0$ or N is similar to a matrix of the form

$$
\left(\begin{array}{ll}
0 & 0 \tag{5}\\
1 & 0
\end{array}\right) .
$$

4. (i) Show that if λ is an eigenvalue of A and $p(x)$ is any polynomial, then $p(\lambda)$ is an eigenvalue of $p(A)$. Hence show that a non-zero nilpotent matrix can't have a non-zero eigenvalue.
(ii) Show that if a square matrix A is diagonalizable then the minimal polynomial can be factored into distinct linear factors.
5. (i) Let T be a linear operator on a vector space V of dimension 5 and the minimal polynomial of T is $(x-1)(x-2)^{2}(x-3)^{2}$. Then find the direct sum decomposition of the vector space V and hence find the canonical form of T.
(ii) Starting from the basis $\{(0,1,1),(1,0,1),(1,1,0)\}$ of $\mathbb{R}^{3}(R)$ construct an orthonormal basis of $\mathbb{R}^{3}(R)$ using Gram-Schmidt orthogonalisation process. 5
6. (i) If x and y are two vectors in an inner product space V, then prove that

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} \tag{3}
\end{equation*}
$$

(ii) Let T be a diagonalizable linear operator on a finite dimensional vector space V with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Then show that there exist linear operators $E_{1}, E_{2}, \ldots, E_{k}$ on V such that
(i) $E_{i}^{2}=E_{i}, R\left(E_{i}\right)=N\left(T-\lambda_{i} I\right), \forall i=1,2, \ldots, k$
(ii) $E_{i} E_{j}=0,(i \neq j)$
(iii) $E_{1}+E_{2}+\ldots+E_{k}=I$
(iv) $T=\lambda_{1} E_{1}+\lambda_{2} E_{2}+\ldots+\lambda_{k} E_{k}$.
7. (i) Let T be a linear operator on a finite dimensional inner product space V over the complex field. Show that there exists an orthonormal basis B w.r.t. which the matrix of T is upper triangular.

[5]

(ii) Let λ, μ be distinct eigenvalues of a normal operator T and x, y are corresponding eigenvectors. Then prove that $\langle x, y\rangle=0$. 3
(iii) If λ is an eigenvalue of a normal operator T then show that $\bar{\lambda}$ is an eigenvalue of T^{*}. 2

