Ex/FM/5.1/43/2017

BACHELOR OF SCIENCE EXAMINATION, 2017

(Final Year, 1st Semester)

MATHEMATICS (Honours)

Paper - 5.1

(Numerical Methods)

Full Marks : 50

Time : Two Hours

The figures in the margin indicate full marks.

Use a separate Answer-Script for each part.

Part - I

(Marks - 30)

Answer Q. No. 1 and any three questions from the rest.

- (a) Define divided difference of order *n*. Show that it is a symmetric function of its arguments.
 3
 - (b) If x_t and y_t be the true values approximated respectively by x_a and y_a with small absolute errors e_x and e_y then show that

[Turn over]

3/1 - 135

$$e_{xy} \le |x_a \cdot y_a| \left\{ \left| \frac{e_x}{x_a} \right| + \left| \frac{e_y}{y_a} \right| \right\}$$
, where e_{xy} is the absolute error in product of x_t and y_t .

Establish Hermite interpolation formula along with error term.
 State the applicability of this formula.

[2]

- 3. Describe secant method for computing a root of an equation f(x) = 0. Find the order of convergence of this method.
- 4. Using the Richardson's extrapolation limit, find y'(0.05) to the function yx+1=0 with h=0.0128, 0.0064, 0.0032.

8

Compare your result with the exact value.

- 5. (a) Evaluate $\int_{-1}^{3} |x| dx$ analytically and numerically by Simpson's $\frac{1}{3}$ and Weddle's method taking six equal sub-intervals. Which numerical method do give better result and why?
 - (b) Find a polynomial f(x) of degree 2 or less such that f(0)=1, f(1)=3 and f(3)=55 by using the [*Turn over*]

3/1 - 135

[3]

Newton divided difference interpolation formula. Hence find f(2). 3

6. Show that the remainder in approximating f(x) by the interpolation polynomial using distinct interpolating points x₀, x₁, x₂, ..., x_n is of the form

$$(x-x_0)(x-x_1)(x-x_2), \dots (x-x_n)\frac{f^{n+1}(\xi)}{|n+1|}, \text{ where } \xi$$

lies between the greatest and smallest of the numbers $x, x_0, x_1, x_2, ..., x_n$. 8

Part - II

(Marks - 20)

Answer any two questions.

6. (a) Use Runge Kutta method to find y(0.1) where y(x) satisfies

$$\frac{dy}{dx} = 2x + y, \ y(0) = 1.$$

[Turn over]

3/1 - 135

[4]

(b) Obtain the least square approximations to fit a straight line to the following data

x	0.2	0.4	0.6	0.8	1.0	
f(x)	0.447	0.632	0.775	0.894	1	

7. Use Gauss-Jacobi method to solve the following system of linear equations :

$$27x + 6y - z = 85$$

$$6x + 15y + 27z = 72$$

$$x + y + 54z = 110$$
10

8. Describe a method to reduce a $n \times n$ matrix to an upper triangular matrix. Hence obtain the number of operational count. 10