Bachelor of Science Examination, 2017

(Final Year, 1st Semester)

MATHEMATICS (Honours)

Paper - 5.1

(Numerical Methods)

Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
Use a separate Answer-Script for each part.

Part I I

(Marks - 30)
Answer Q. No. 1 and any three questions from the rest.

1. (a) Define divided difference of order n. Show that it is a symmetric function of its arguments.
(b) If x_{t} and y_{t} be the true values approximated respectively by x_{a} and y_{a} with small absolute errors e_{x} and e_{y} then show that
$e_{x y} \leq\left|x_{a} \cdot y_{a}\right|\left\{\left|\frac{e_{x}}{x_{a}}\right|+\left|\frac{e_{y}}{y_{a}}\right|\right\}$, where $e_{x y}$ is the absolute error in product of x_{t} and y_{t}.
2. Establish Hermite interpolation formula along with error term.

State the applicability of this formula.
3. Describe secant method for computing a root of an equation $f(x)=0$. Find the order of convergence of this method.
4. Using the Richardson's extrapolation limit, find $y^{\prime}(0.05)$ to the function $y x+1=0$ with $h=0.0128,0.0064,0.0032$. Compare your result with the exact value.
5. (a) Evaluate $\int_{-1}^{3}|x| d x$ analytically and numerically by Simpson's $\frac{1}{3}$ and Weddle's method taking six equal sub-intervals. Which numerical method do give better result and why?
(b) Find a polynomial $f(x)$ of degree 2 or less such that $f(0)=1, f(1)=3$ and $f(3)=55$ by using the

[3]

Newton divided difference interpolation formula. Hence find $f(2)$. 3
6. Show that the remainder in approximating $f(x)$ by the interpolation polynomial using distinct interpolating points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ is of the form
$\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right), \ldots\left(x-x_{n}\right) \frac{f^{n+1}(\xi)}{\lfloor n+1}$, where ξ lies between the greatest and smallest of the numbers $x, x_{0}, x_{1}, x_{2}, \ldots, x_{n}$. 8

Part - II

(Marks - 20)
Answer any two questions.
6. (a) Use Runge Kutta method to find $y(0.1)$ where $y(x)$ satisfies

$$
\frac{d y}{d x}=2 x+y, y(0)=1 .
$$

[4]

(b) Obtain the least square approximations to fit a straight line to the following data

x	0.2	0.4	0.6	0.8	1.0
$f(x)$	0.447	0.632	0.775	0.894	1

7. Use Gauss-Jacobi method to solve the following system of linear equations :

$$
\begin{align*}
27 x+6 y-z & =85 \\
6 x+15 y+27 z & =72 \\
x+y+54 z & =110 \tag{10}
\end{align*}
$$

8. Describe a method to reduce a $n \times n$ matrix to an upper triangular matrix. Hence obtain the number of operational count.

10

