Ex/INT/M/3.3/27/2017

Bachelor of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS (Honours)

Unit-3.3
(Analysis - I)
Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
(Notations/Symbols have their usual meanings.)
Answer any five questions.

1. (a) Define a countable set. Prove that every subset of a countable set is countable.
(b) Prove that a countable union of countable sets is countable.
2. (a) Define an uncountable set. Let A be the set of all sequences whose elements are the digits 0 and 1 . Show that A is uncountable.
(b) Let \mathbb{N} be the set of all natural numbers, \mathbb{R} be the set of all real numbers, $n \in \mathbb{N}$ and $|X|$ denote the cardinality of a set X. Prove that $|\mathbb{R}|=\left|\mathbb{R}^{n}\right|=\left|\mathbb{R}^{\mathbb{N}}\right| . \quad 5$
3. (a) Define the least upper bound property of a linearly ordered set. Prove that the set of all rational numbers does not have the least upper bound property.
(b) Define the derived set S^{\prime} of a subset S of \mathbb{R}. Find S^{\prime}, where $S=\left\{\left.\frac{1}{m}+\frac{1}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$.
4. (a) Define a limit point of a subset of \mathbb{R}. Prove that a finite subset of \mathbb{R} has no limit points.
(b) Define an open subset and a closed subset of \mathbb{R}. Prove that a subset S of \mathbb{R} is open if and only if $\mathbb{R} \backslash S$ is closed.
5. (a) Define the closure \bar{S} of a subset S of \mathbb{R}. Prove that $\overline{A \bigcup B}=\bar{A} \cup \bar{B}$, where A and B are subsets of $\mathbb{R} . \quad 5$
(b) Define a perfect subset of \mathbb{R} and the Cantor set. Prove that the Cantor set is perfect.

[3]

6. (a) Define a covering F of a subset of \mathbb{R} and a subcovering of F. Let $S \subseteq \mathbb{R}$. Prove that every covering of S by open intervals has a countable subcovering.
(b) Let $T=S^{\prime}$, the derived set of $S \subseteq \mathbb{R}$. In the following, either prove that T is compact or find a covering of T by open intervals which has no finite subcovering :
(i) $S=\left\{\left.\frac{1}{m}+\frac{1}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$,
(ii) $S=\{x \in \mathbb{R} \mid 0<x<1\}$.
7. (a) Define a conditionally convergent infinite series of real numbers. Show that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots$ is conditionally convergent.

[4]

(b) Define a uniformly continuous real function on a subset of \mathbb{R}. Prove that $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$ but is uniformly continuous on $\left[\frac{1}{2}, 1\right)$. 5

