Ex/INT/M/3.3/27/2017

BACHELOR OF SCIENCE EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS (Honours)

Unit - 3.3

(Analysis - I)

Full Marks: 50 Time: Two Hours

The figures in the margin indicate full marks.

(Notations/Symbols have their usual meanings.)

Answer any five questions.

- 1. (a) Define a *countable* set. Prove that every subset of a countable set is countable.
 - (b) Prove that a countable union of countable sets is countable.
- 2. (a) Define an *uncountable* set. Let *A* be the set of all sequences whose elements are the digits 0 and 1. Show that *A* is uncountable.

[Turn over]

- (b) Let \mathbb{N} be the set of all natural numbers, \mathbb{R} be the set of all real numbers, $n \in \mathbb{N}$ and |X| denote the cardinality of a set X. Prove that $|\mathbb{R}| = |\mathbb{R}^n| = |\mathbb{R}^{\mathbb{N}}|$. 5
- 3. (a) Define the least upper bound property of a linearly ordered set. Prove that the set of all rational numbers does not have the least upper bound property.
 - (b) Define the *derived set* S' of a subset S of \mathbb{R} . Find S', where $S = \left\{ \frac{1}{m} + \frac{1}{n} \mid m, n \in \mathbb{N} \right\}$.
- 4. (a) Define a *limit point* of a subset of \mathbb{R} . Prove that a finite subset of \mathbb{R} has no limit points.
 - (b) Define an *open subset* and a *closed subset* of \mathbb{R} . Prove that a subset S of \mathbb{R} is open if and only if $\mathbb{R} \setminus S$ is closed.
- 5. (a) Define the *closure* \overline{S} of a subset S of \mathbb{R} . Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$, where A and B are subsets of \mathbb{R} .
 - (b) Define a *perfect subset* of \mathbb{R} and the *Cantor set*. Prove that the Cantor set is perfect.

[Turn over]

- 6. (a) Define a *covering* F of a subset of \mathbb{R} and a *subcovering* of F. Let $S \subseteq \mathbb{R}$. Prove that every covering of S by open intervals has a countable subcovering.
 - (b) Let T = S', the derived set of $S \subseteq \mathbb{R}$. In the following, either prove that T is compact or find a covering of T by open intervals which has no finite subcovering:

(i)
$$S = \left\{ \frac{1}{m} + \frac{1}{n} \mid m, \ n \in \mathbb{N} \right\},$$

(ii)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1\}$$
.

7. (a) Define a *conditionally convergent infinite series* of real numbers. Show that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

is conditionally convergent.

5

- (b) Define a *uniformly continuous* real function on a subset of \mathbb{R} . Prove that $f(x) = \frac{1}{x}$ is not uniformly continuous
 - on (0, 1) but is uniformly continuous on $\left[\frac{1}{2}, 1\right]$.