Ex/INT/M/VIIIS/28/2017

Bachelor of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS (Subsidiary)

Paper - 8S

[Methods of Series Solution of ODE \& Special Functions]

The figures in the margin indicate full marks.
(Notations and Symbols have their usual meanings)
Answer any five questions.

1. Find the power series solution of the differential equation :
$\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+(3 x+2) y=0$ in power of x. Write atleast first four nonzero terms in each series.
2. Locate and classify the singular points of the following differential equation.
$x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+\left(x^{2}-\frac{1}{4}\right) y=0$
Find the series solution of the above equation. Write atleast

[2]

first three nonzero terms in each series. Hence write the solution in terms of elementary functions.
3. Prove that

$$
P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n},
$$

where $P_{n}(x)$ is the Legendre polynomial of degree n. Hence find the expressions for P_{0}, P_{1}, P_{2} and P_{3}.
4. (a) Starting from the relation

$$
\begin{aligned}
& e^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}, \text { prove that } \\
& \begin{array}{ll}
\cos (x \cos \theta) & =J_{0}-2 J_{2} \cos 2 \theta+2 J_{4} \cos 4 \theta-\cdots \\
\sin (x \cos \theta) & =2 J_{1} \cos \theta-2 J_{3} \cos 3 \theta+\cdots
\end{array}
\end{aligned}
$$

where $J_{n}(x)$ is the Bessel function of first kind and of order n.
(b) Write first three terms of Bessel's function of first kind and of order zero $J_{0}(x)$. Hence find a rough estimate of the first positive zero of it.
5. State the orthogonality property of Chebyshev polynomials of first kind. Draw first five Tchebyshev polynomials of first [Turn over]

[3]

kind. Find the Tchebyshev series expansion of $\sin \left(\cos ^{-1} x\right)$. Write first five terms of the series. 10
6. (a) Expand e^{x} in Hermite series. Write first two terms of the series.
(b) Prove the Rodrigue's formula for Hermite polynomials

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) . \tag{4}
\end{equation*}
$$

7. (a) Starting from the Rodrigue's formula for Legendre polynomials, prove that

$$
P_{n}(x)=\frac{1}{2^{n}} \sum_{r=0}^{N} \frac{(-1)^{r}(2 n-2 r)!x^{n-2 r}}{r!(n-r)!(n-2 r)!}
$$

where $P_{n}(x)$ is the Legendra polynomial of degree n. Determine the appropriate value of N in terms of n, for both even and odd values of n.
(b) Prove that $J_{-n}=(-1)^{n} J_{n}$ for integral values of n, where $J_{n}(x)$ is the Bessel function of first kind and of order n.

