Ex/INT/M/3.2/27/2017

Bachelor of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS (Honours)

Paper - 3.2

(Differential Equation - II)

Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
(Notations and Symbols have their usual meanings.)

Part I I

(30 marks)
Answer any three questions.

1. (a) Find the series solution of

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-1\right) y=0
$$

about the point $x=0$.
(b) Show that $J_{n}^{\prime}(x) J_{-n}(x)-J_{n}(x) J_{-n}^{\prime}(x)=\frac{c}{x}$, where c is a constant.
2. (a) Prove that $\exp \left\{\frac{x}{2}\left(z-\frac{1}{z}\right)\right\}=\sum_{-\infty}^{\infty} z^{n} J_{n}(x)$ and hence deduce that

$$
\cos (x \sin \phi)=J_{0}+2 \cos 2 \phi . J_{2}+2 \cos 4 \phi . J_{4}+\ldots
$$

(b) Show that

$$
\int_{-1}^{1} x^{2} P_{n-1}(x) P_{n+1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}
$$

3. (a) If ϕ_{m} and ϕ_{n} are characteristic functions corresponding to two distinct characteristic roots λ_{m} and λ_{n} of Sturm-Liouville problem, then show that ϕ_{m} and ϕ_{n} are orthogonal with respect to some weight function.
(b) Show that,

$$
\frac{d}{d x}\left(J_{n}^{2}+J_{n+1}^{2}\right)=2\left(\frac{n}{x} J_{n}^{2}-\frac{n+1}{x} J_{n+1}^{2}\right) \quad 6+4
$$

[Turn over]

[3]

4. (a) Find all the eigen values and eigen functions of the Strum-Lionville problem

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0 \text { with } \begin{aligned}
& y(0)+y^{\prime}(0)=0 \\
& y(1)+y^{\prime}(1)=0
\end{aligned}
$$

(b) Prove that,

$$
P_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi}\left[x \pm \sqrt{\left(x^{2}-1\right)} \cos \phi\right]^{n} d \phi
$$

where n is a positive integer.
$5+5$
5. (a) Show that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$, if $m \neq n$

$$
=\frac{2}{2 n+1} \text {, if } m=n
$$

(b) Show that

$$
\frac{d}{d x} F(\alpha, \beta ; \gamma ; x)=\frac{\alpha \beta}{\gamma} F(\alpha+1, \beta+1 ; \gamma+1 ; x)
$$

(c) Show that

$$
\sin ^{-1} x=x F\left(\frac{1}{2}, \frac{1}{2} ; \frac{3}{2} ; x^{2}\right) \quad 6+2+2
$$

Part - II

(20 marks)
Answer any two questions.
6. (a) State and prove the existence theorem on Laplace transform.
(b) Find the Laplace transform of the function

$$
f(t)=t e^{-t} \sin 3 t
$$

(c) If $F(p)$ be the Laplace transform of the function $f(t)$, show that for any constant $a>0$, $L\{f(a t)\}=\frac{1}{a} F(p / a)$.

Given that $L\left\{\frac{\sin t}{t}\right\}=\tan ^{-1} \frac{1}{p}$, use the above result to find $L\left\{\frac{\sin a t}{t}\right\}$.
[Turn over]
7. (a) If $L\{f(t)\}=F(p)$, then show that

$$
\int_{0}^{\infty} \frac{f(t)}{t} d t=\int_{0}^{\infty} F(p) d p
$$

Hence evaluate the integral

$$
\int_{0}^{\infty} \frac{e^{-t}-e^{-3 t}}{t} d t
$$

(b) Find $L^{-1}\left\{\frac{1}{p} \log \left(1+\frac{1}{p}\right)\right\}$.
(c) Evaluate the integral

$$
\int_{0}^{t} J_{0}(t) J_{0}(t-\tau) d \tau
$$

8. (a) Find the solution of the following initial value problem :

$$
\begin{aligned}
& y^{\prime \prime}(t)+a^{2} y(t)=f(t) \\
& y(0)=1, y^{\prime}(0)=2
\end{aligned}
$$

[Turn over]

[6]

(b) Solve the following simultaneous differential equations :

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-3 y \\
& \frac{d y}{d t}=y-2 x
\end{aligned}
$$

subject to the conditions :

$$
x(0)=8 \text { and } y(0)=3 . \quad 4+6
$$

