Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS (Honours)

Unit-1.2
(Geometry)
Full Marks : 50
Time : Two Hours
The figures in the margin indicate full marks.
Use a separate Answer-Script for each part.
(Notations/Symbols have their usual meanings.)

Part - I

(20 Marks)
Answer any two questions.

1. (a) Show that the necessary and sufficient conditions that the general equation of second degree in x, y should represent a pair of straight lines is

$$
\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0 .
$$

(b) Prove that the transformation of rectangular axes which converts $\frac{X^{2}}{p}+\frac{Y^{2}}{q}$ into $a x^{2}+2 h x y+b y^{2}$ will convert $\frac{X^{2}}{p-\lambda}+\frac{Y^{2}}{q-\lambda}$ to $\frac{a x^{2}+2 h x y+b y^{2}-\lambda\left(a b-h^{2}\right)\left(x^{2}+y^{2}\right)}{1-(a+b) \lambda+\left(a b-h^{2}\right) \lambda^{2}}$.
2. (a) Show that the equation
$2 x^{2}-3 x y-2 y^{2}+7 x-9 y=0$ represents a central conic and hence reduce it into canonical form.
(b) Define confocal conics. Show that through every point in the plane of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, two confocal conics can be drawn, one is an ellipse and the other is a hyperbola.
3. (a) If the equation of the conic is $a x^{2}+2 h x y+b y^{2}+c=0$, show that the origin is the centre.

[3]

(b) Show that the straight lines joining the origin to the points of intersection of the curves
$a x^{2}+2 h x y+b y^{2}+2 g x=0$
and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$ will be at right angle if $g\left(a^{\prime}+b^{\prime}\right)=g^{\prime}(a+b)$.
(c) If a focal chord of an ellipse makes an angle α with the major axis, show that the angle between the tangents at its extremities is

$$
\tan ^{-1}\left(\frac{2 e \sin \alpha}{1-e^{2}}\right)
$$

Part - II

(30 Marks)
Answer any two from Q. No. 4 to Q. No. 6 and and one from Q. No. 7 to Q. No. 8.
4. (a) Show that the equation to the plane containing the straight line $\frac{y}{b}+\frac{z}{c}=1, x=0$ and parallel to the straight line $\frac{x}{a}-\frac{z}{c}=1, y=0$ is $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}+1=0$ and if $2 d$ be [Turn over]
the shortest distance between the lines, then show that $\frac{1}{d^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$.
(b) Perpendiculars PL, PM, PN are drawn from the point $P(a, b, c)$ to the co-ordinate planes. Show that the equation of the plane LMN is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2$.

4
5. (a) Show that the surface generated by a straight line which intersects the straight lines
$y=0, z=c ; x=0, z=-c$ and the curve
$z=0, x y+c^{2}=0$ is $z^{2}-c^{2}=x y$.
(b) A sphere of constant radius $2 k$ passes through the origin and cuts the axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Show that the locus of the centroid of the tetrahedron OABC is the sphere

$$
x^{2}+y^{2}+z^{2}=k^{2} .
$$

6. (a) A variable line always intersects the line $z=0, x=y$ and the circles

$$
x=0, y^{2}+z^{2}=d^{2} ; y=0, z^{2}+x^{2}=d^{2} .
$$

Show that the equation to its locus is

$$
\begin{equation*}
(x+y)^{2}\left\{z^{2}+(x-y)^{2}\right\}=d^{2}(x-y)^{2} . \tag{6}
\end{equation*}
$$

(b) Prove that the locus of the point which is equidistant from the lines $y=m x, z=c$ and $y=-m x, z=-c$ is the surface $m x y+\left(1+m^{2}\right) c z=0$.
7. (a) Find the equation of the cylinder whose generators are parallel to the line $x=-\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is the ellipse $x^{2}+2 y^{2}=1, z=3$.
(b) The section of the enveloping cone of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ whose vertex is P, by the plane $z=0$ is a rectangular hyperbola. Show that the locus of P is $\frac{x^{2}+y^{2}}{a^{2}+b^{2}}+\frac{z^{2}}{c^{2}}=1$.
8. (a) A sphere of constant radius r passes through the origin cuts the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the locus of the

$$
\text { [} 6 \text {] }
$$

foot of the perpendicular from origin to the plane ABC is given by $\left(x^{2}+y^{2}+z^{2}\right)^{2}\left(x^{-2}+y^{-2}+z^{-2}\right)=4 r^{2} .5$
(b) Show that the condition that the plane $a x+b y+c z=0$ may cut the cone $y z+z x+x y=0$ in perpendicular lines is $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$. 5

