Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS (Honours)

Unit-1.1
(Calculus)
Full Marks : 50
Time : Two Hours
The figures in the margin indicate full marks.
Use a separate Answer-Script for each part.
(Notations and Symbols have their usual meanings.)

$$
\begin{aligned}
& \quad \text { Part - I (30 Marks) } \\
& \text { Answer any three questions. }
\end{aligned} \quad 10 \times 3=30 \text {. }
$$

1. (a) Does $\lim _{x \rightarrow 0}\left(\sin \frac{1}{x}+x \sin \frac{1}{x}\right)$ exist?
(b) Let the function f be defined by

$$
f(x)=\left\{\begin{aligned}
\frac{1-\cos x}{x^{2}}, & \text { for } x \neq 0 \\
1, & \text { for } x=0
\end{aligned}\right.
$$

Is f continuous at $x=0$? Explain.

[2]

(c) Let $f(x)=\left\{\begin{array}{cl}x^{m} \sin \frac{1}{x}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{array}\right.$

Then show that $f(x)$ is derivable at $x=0$. Also determine m when $f^{\prime}(x)$ is continuous at $x=0$.
$2^{1 / 2}+2^{11 / 2}+5$
2. (a) If $f(x)=\tan x$, then show that
$f^{n}(0)-{ }^{n} c_{2} f^{n-2}(0)+{ }^{n} c_{4} f^{n-4}(0)-\ldots=\sin n \pi / 2$
(b) State Rolle's theorem. Use this theorem to show that the polynomial equation
$c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}=0$ has at least one root between 0 and 1, if $c_{0}+\frac{c_{1}}{2}+\frac{c_{2}}{3}+\ldots+\frac{c_{n}}{n+1}=0 . \quad 4+6$
3. (a) State Euler's theorem for homogeneous function of two variables.

If $V=\sin ^{-1} \sqrt{\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}}$, then
[Turn over]
prove that

$$
x^{2} \frac{\partial^{2} v}{\partial x^{2}}+2 x y \frac{\partial^{2} v}{\partial x \partial y}+y^{2} \frac{\partial^{2} v}{\partial y^{2}}=\frac{\tan v}{12}\left(\frac{13}{12}+\frac{\tan ^{2} v}{12}\right)
$$

(b) Use mean value theorem of appropriate order to prove that

$$
x-\frac{x^{2}}{2}<\log (1+x)<x, \text { for all } x>0 . \quad 6+4
$$

4. (a) Examine the continuity of the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{4}+y^{4}}{x-y}, & \text { when } x \neq y \\
0, & \text { when } x=y
\end{array}\right.
$$

at $(0,0)$.
(b) Let $f(x, y)=\left\{\begin{array}{cc}x \sin \frac{1}{y}+y \sin \frac{1}{x}, & \text { when } x y \neq 0 \\ 0, & \text { when } x y=0\end{array}\right.$

$$
\text { then show that } \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

but the repeated limits do not exist.
5. (a) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$.
(b) State and prove fundamental theorem of Integral Calculus. $4+6$

Part - II (20 Marks)

Attempt any four questions. $\quad 5 \times 4=20$
6. Define asymptote of a curve. Find the asymptotes of the curve $\left(x^{2}-y^{2}\right)^{2}-4 y^{2}+y=0$.
7. For any curve $r=f(\theta)$. Prove that $\frac{d s}{d r}=\sqrt{1+r^{2}\left(\frac{d \theta}{d r}\right)^{2}}$.
8. Define the pedal equation of a curve with respect to a fixed point on the plane of the curve. Find the pedal equation of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ w.r.t origin.
9. Find the surface area of the solid generated by revolution of the cardioide $r=a(1+\cos \theta)$ about the initial line.

[5]

10. If p_{1} and p_{2} be the perpendiculars from the origin on the tangent and normal respectively at any point (x, y) on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$. Then show that $4 p_{1}^{2}+p_{2}^{2}=a^{2}$.
11. Find the radius of curvature at any point P of the catenary $y=c \cosh \left(\frac{x}{c}\right)$ and show that $P C=P G$, where C is the centre of curvature at P and G is the point of intersection of the normal at P with X-axis.
