Ex/IM/IIS/12/2017

Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS (Subsidiary)

Paper - IIS

(Algebra-1)

Full Marks : 50
Time : Two Hours
The figures in the margin indicate full marks.
(Notations and Symbols have their usual meanings)
Answer any five questions.

1. (a) State and prove DeMoivre's theorem.
(b) If z is a variable complex number such that an amplitude of $\frac{z-i}{z+1}$ is $\frac{\pi}{4}$. Show that the point z lies on a circle in the complex plane. Also find the radius and centre of the circle.
2. (a) Define a^{z} where ' a ' is a nonzero complex number and z is any complex number. If a, b, z are complex numbers such that $a b \neq 0$, prove that $(a b)^{z}=a^{z} \cdot b^{z}$.

Is the principal value of $(a b)^{z}$ equal to the product of the principal values of a^{z} and b^{z} ? Justify.
(b) If $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$, prove that

$$
\begin{array}{r}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=3 / 2 . \\
5+5=10
\end{array}
$$

3. (a) Find the principal value of $\log (1+\cos 2 \theta+i \sin 2 \theta)$, $\frac{\pi}{2}<\theta<\pi$.

3
(b) If n be a positive integer and $(1+z)^{n}=p_{0}+p_{1} z+p_{2} z^{2}+\cdots+p_{n} z^{n}$ then show that $p_{0}-p_{2}+p_{4}-\cdots=2^{n / 2} \cos \frac{n \pi}{4}$.
(c) If a, b, c, x, y, z be all real numbers and $a^{2}+b^{2}+c^{2}=1, \quad x^{2}+y^{2}+z^{2}=1$, then show that $-1 \leq a x+b y+c z \leq 1$.
4. (a) Show that the p-series $\sum \frac{1}{n^{p}}$ converges only when $p>1$.
[Turn over]

[3]

Also show that the harmonic series $\sum \frac{1}{n}$ diverges. 5
(b) Test the converges of the following series

$$
\begin{equation*}
1+\frac{1}{2} \cdot \frac{1}{3}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7}+\cdots \tag{5}
\end{equation*}
$$

5. (a) Find the region of convergence of the series

$$
\begin{equation*}
\frac{x}{1^{2}}+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{2}}+\cdots \tag{5}
\end{equation*}
$$

(b) Test the convergence of the series

$$
\left(\frac{2^{2}}{1^{2}}-\frac{4}{1}\right)+\left(\frac{3^{3}}{2^{3}}-\frac{5}{2}\right)^{2}+\left(\frac{4^{4}}{3^{4}}-\frac{6}{3}\right)^{3}+\cdots .
$$

6. (a) Write the Descarte's rule of signs. Apply the rule to examine the nature of roots of the equation $x^{7}+x^{5}-x^{3}=0$. 5
(b) Solve $x^{3}-3 x-1=0$ by Cardan's method.

[4]

7. (a) If α be a multiple root of order 3 of the equation

$$
x^{4}+b x^{2}+c x+d=0,(d \neq 0), \text { show that } \alpha=-\frac{8 d}{3 c} .
$$

(b) If a, b, c be positive real numbers, prove that

$$
(a b+b c+c a)\left(a \cdot b^{-1}+b \cdot c^{-1}+c \cdot a^{-1}\right) \geq(a+b+c)^{2}
$$

