Ex/1M/1S/12/2017

Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS (Subsidiary)

Paper - 1S

(Calculus - I)

Full Marks : 50

Time : Two Hours
The figures in the margin indicate full marks.
(Notations and Symbols have their usual meanings)
Answer any five questions.

1. (a) Show that the $\lim _{x \rightarrow 0} \frac{1}{1+e^{1 / x}}$ does not exist.
(b) State Leibnitz's theorem on Successive - Differentiation.

Using this theorem prove that if $y=\cos \left(m \sin ^{-1} x\right)$, then $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.

Also find y_{n} for $x=0$.
$4+6=10$
2. (a) Let f be real valued function defined over $[-1,1]$ such
that $f(x)= \begin{cases}x \cos \frac{1}{x}, & x \neq 0 \\ 0, & x=0 .\end{cases}$

Does the mean value theorem hold for f in $[-1,1]$?
(b) Use mean value theorem of appropriate order to prove that $\sin x>x-\frac{x^{3}}{3!}$, when $0<x<\pi / 2$.
(c) Evaluate the $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}} . \quad 2+4+4=10$
3. (a) Test the convergence of the following :
(i) $\int_{1}^{\infty} \frac{d x}{x(1+x)}$
(ii) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
(b) Show that $\int_{0}^{\pi / 2} \frac{\sin ^{m} x}{x^{n}} d x$ converges for $n<m+1.5+5$
[Turn over]

[3]

4. (a) If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta$, then prove that $I_{n}=\frac{1}{n-1}-I_{n-2}$.
(b) Prove that $B(x, y)=\frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}$; for $x, y>0$.

$$
5+5=10
$$

5. (a) Find the asymptotes of the curve

$$
y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+y^{2}-x^{2}+2 x-3 y-1=0 .
$$

(b) Find the radius of curvature at the origin of

$$
y^{2}=\frac{x^{2}(a+x)}{(a-x)} .
$$

$$
5+5=10
$$

6. (a) Show that the minimum value of $\frac{(2 x-1)(x-8)}{x^{2}-5 x+4}$ is greater than its maximum value.
(b) If $f(x)=x \sin \frac{1}{x}$, when $x \neq 0$

$$
=0 \quad \text {, when } x=0
$$

then show that $f(x)$ is continuous at $x=0 . \quad 6+4=10$
[Turn over]

[4]

7. (a) Find the values of a and b so that

$$
\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1 .
$$

(b) State Rolle's theorem. What is its geometrical interpretations?
(c) In Cauchy Mean value theorem, $\varphi(x)=\sin x$, $\psi(x)=\cos x$. Show that θ is independent of both x and h and equal to $1 / 2$. $4+2+4=10$

