Ex/1M/III/11/2017

Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS (Honours)

Paper - 1.3

[Algebra - I]
Full Marks : 50
Time : Two Hours
The figures in the margin indicate full marks.
Use a separate Answer-Script for each Part.
(Notations and Symbols have their usual meanings)

Part I I

Answer any five questions.
Let \mathbb{R} denotes the field of all real numbers.

1. Define a vector space. Let $V=\mathbb{R} \times \mathbb{R}$. For $(a, b),(c, d) \in V$ and $c \in \mathbb{R}$, define $(a, b)+(c, d)=(a+2 c, b+3 d)$ and $c(a, b)=(c a, c b)$

Is V a vector space over \mathbb{R} under the above addition and scalar multiplication? Justify your answer.
2. Define a subspace of a vector space. Let W_{1} and W_{2} be two subspaces of a vector space V. Show that $W=W_{1}+W_{2}=\left\{u+v \mid u \in W_{1}, v \in W_{2}\right\}$ is the smallest subspace of V containing both W_{1} and W_{2}. 5
3. Define linearly dependent and linearly independent set of vectors in a vector space over \mathbb{R}. Let

$$
S=\{(1,3,-4,2),(2,2,-4,0),(1,-3,2,-4),(-1,0,1,0)\} \subset \mathbb{R}^{4} .
$$

Determine whether S is linearly dependent or independent set of vectors in \mathbb{R}^{4} over \mathbb{R}. Find the dimension of the subspace of \mathbb{R}^{4} generated by S.
4. Define a basis of a vector space. Let W be the subspace generated by the vectors $(2,-3,4,-5,2)$, $(-6,9,-12,15,-6),(3,-2,7,-9,1),(2,-8,2,-2,6)$, $(-1,1,2,1,-3), \quad(0,-3,-18,9,12), \quad(1,0,-2,3,-2)$ and $(2,-1,1,-9,7)$. Find a basis of W over \mathbb{R} that is a subset of the set containing the above vectors.
5. Let V and W be two vector spaces over \mathbb{R}. Define a linear transformation T from V into W. Define nullity and rank of T. If V is finite dimensional with dimension n over \mathbb{R}, then show that $\operatorname{rank}(T)+\operatorname{nullity}(T)=n$.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

[3]

$$
T(x, y, z)=(4 x+z, 2 x+3 y+2 z, x+4 z)
$$

Find the matrix representation A to T with respect to the standard ordered basis of \mathbb{R}^{3}. Determine whether A is diagonalizable.
7. Define the characteristic equation, eigenvalues and corresponding eigenspaces of a square matrix over \mathbb{R} and find those for the following matrix :

$$
\left(\begin{array}{ccc}
7 & -4 & 10 \\
4 & -3 & 8 \\
-2 & 1 & -2
\end{array}\right)
$$

Part - II

Answer any five questions. $5 \times 5=25$
8. (i) Let A and B be two square matrices of the same order n such that $A B=I_{n}$. Show that $B A=I_{n}$.
(ii) Let A be a nilpotent matrix of order n and index k. Show that both $I_{n}-A$ and $I_{n}+A$ are invertible. Is A invertible? Justify your answer.
$2+1$
9. (i) (a) Let A and B be two orthogonal matrices of the same order. Show that $A B$ is also an orthogonal matrix. 1
(b) Let A be a real skew symmetric matrix of order n such that $A^{2}+I_{n}=0$. Show that A is an orthogonal matrix.
(ii) Show that an invertible skew symmetric matrix must be of even order.
10. (i) Let A be a square matrix of order n. Show that $A(\operatorname{adj} A)=(\operatorname{det} A) I_{n}$. Hence show that $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$ if $\operatorname{det} A \neq 0$. 2
(ii) By using Laplace's expansion, show that

$$
\left|\begin{array}{cccc}
a & -b & -a & b \\
b & a & -b & -a \\
c & -d & c & -d \\
d & c & d & c
\end{array}\right|=4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
$$

11. (i) (a) Let A be a non-singular matrix of order n. What is the rank of A^{3} ? Justify your answer.
(b) Let A be a square matrix of order 3 such that A is not a symmetric matrix. Show that rank of the matrix

$$
A-A^{T} \text { is } 2 .
$$

(ii) If the system of equations $x=c y+b z, \quad y=a z+c x$, $z=b x+a y$ has a non-zero solution then show that $a^{2}+b^{2}+c^{2}+2 a b c=1$. 2
[Turn over]

[5]

12. (i) Show that two similar matrices have same eigen values. Is the converse true ? Justify your answer.
$2+1$
(ii) Let A be a real square matrix of order 2 with trace 5 and determinant value 6 . Find the eigen values of the matrix $B=A^{2}-2 A+I_{2}$.
13. (i) What is the multiplicity of the root $x=1$ of the equation $x^{n}-n x+(n-1)=0(n>1) ?$ Justify your answer.
(ii) (a) If the roots of the equation $8 x^{3}-12 x^{2}-K x+3=0$ are in A.P. then find the value of K.
(b) Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ be the roots of the equation $x^{n}-1=0$. Show that $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \cdots\left(1-\alpha_{n-1}\right)=n$.
14. (i) Apply Descartes' rule of signs to find the nature of the roots of the equation $x^{6}+x^{4}+x^{2}+x+3=0$.
(ii) Solve the equation $x^{3}-12 x+65=0$ by Cardan's method.
