Ex/1M/III S/12/2017

BACHELOR OF SCIENCE EXAMINATION, 2017

(1st Year, 1st Semester)

MATHEMATICS (Subsidiary)

Paper - 3 S

(Analytical Geometry)

Full Marks : 50

Time : Two Hours

Use separate Answer-Script for each Group.

The figures in the margin indicate full marks. (Notations/Symbols have their usual meanings)

Group-A

(Marks: 20)

Answer any *two* questions. $10 \times 2=20$

- 1. (a) Transform the equation $2x^2 xy + y^2 + 2x 3y + 5 = 0$ to new axes of x and y given by the straight line 4x + 3y + 1 = 0 and 3x - 4y + 2 = 0 respectively.
 - (b) Find the angle through which the axes are to be rotated so that the equation $x\sqrt{3} + y + 6 = 0$ may be reduced to the form x r = c. Also determine the value of *c*.

5+5=10

[Turn over]

1/7 - 210

[2]

- 2. (a) Show that the area of the triangle formed by the straight lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is $\sqrt{h^2 - ab} / (am^2 - 2hlm + bl^2).$
 - (b) Find the condition that one of the straight lines given by $ax^2 + 2hxy + by^2 = 0$ may coincide with one of the straight lines given by $px^2 + 2qxy + qy^2 = 0$. 5+5=10
- 3. (a) If the pole of the straight line with respect to the circle $x^2 + y^2 = a^2$ lies on $x^2 + y^2 = k^2 a^2$, then prove that the straight line will touch the circle $x^2 + y^2 = \frac{a^2}{k^2}$.
 - (b) Show that the locus of the poles of tangents to the parabola $ay^2 + 2b^2x = 0$ with respect to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is the parabola $ay^2 - 2b^2x = 0$.
5+5=10

Group - B

(Marks: 30)

Answer any *three* questions. $10 \times 3=30$

4. (a) Find the angle between the straight lines whose direction ratios are (5, -12, 13) and (-3, 4, 5).

[Turn over]

1/7 - 210

[3]

(b) If (l_1, m_1, n_1) and (l_2, m_2, n_2) be the direction cosines of two perpendicular straight lines, then show that the direction cosines of the straight line perpendicular to both of them are

$$\pm (m_1 n_2 - m_2 n_1), \pm (n_1 l_2 - n_2 l_1), \pm (l_1 m_2 - l_2 m_1)$$
 3+7

- 5. (a) Find the equation of the plane passing through three points (2, 2, -1); (3, 4, 2) and (7, 0, 6).
 - (b) Find the equation of the plane which passes through the point (2, 1, -1) and is orthogonal to each of x-y+z=1 and 3x+4y-2z=0. 5+5
- 6. (a) Find the distance of the point (1, -2, 3) from the plane x - y + z = 5 measured parallel to the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{6}$.
 - (b) Find the values of *b* and *c* for which the straight line $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z+3}{3}$ lies on the plane 9x + by + cz = 30. 5+5

[Turn over]

1/7 - 210

- 7. (a) Find the condition that the straight lines $\frac{x}{\alpha} = \frac{y}{\beta} = \frac{z}{\gamma}$; $\frac{x}{a\alpha} = \frac{y}{b\beta} = \frac{z}{c\gamma}$ and $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ are coplanar.
 - (b) Find the shortest distance between the straight lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and } \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}.$$
5+5

8. A sphere S has points (0, 1, 0) and (3, -5, 2) as the opposite ends of a diameter. Find the equation of the sphere on which the intersection of the plane 5x - 2y + 4z + 7 = 0 with S is a great circle.

1/7 - 210

[4]