Ex/1M/III S/12/2017

Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS (Subsidiary)

Paper-3 S

(Analytical Geometry)

Full Marks : 50

Time : Two Hours

Use separate Answer-Script for each Group.
The figures in the margin indicate full marks.
(Notations / Symbols have their usual meanings)

Group-A

(Marks : 20)
Answer any two questions.

1. (a) Transform the equation $2 x^{2}-x y+y^{2}+2 x-3 y+5=0$ to new axes of x and y given by the straight line $4 x+3 y+1=0$ and $3 x-4 y+2=0$ respectively.
(b) Find the angle through which the axes are to be rotated so that the equation $x \sqrt{3}+y+6=0$ may be reduced to the form $x r=c$. Also determine the value of c.

$$
5+5=10
$$

[Turn over]
2. (a) Show that the area of the triangle formed by the straight lines $a x^{2}+2 h x y+b y^{2}=0$ and $l x+m y=1 \quad$ is $\sqrt{h^{2}-a b} /\left(a m^{2}-2 h l m+b l^{2}\right)$.
(b) Find the condition that one of the straight lines given by $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of the straight lines given by $p x^{2}+2 q x y+q y^{2}=0 . \quad 5+5=10$
3. (a) If the pole of the straight line with respect to the circle $x^{2}+y^{2}=a^{2}$ lies on $x^{2}+y^{2}=k^{2} a^{2}$, then prove that the straight line will touch the circle $x^{2}+y^{2}=a^{2} / k^{2}$.
(b) Show that the locus of the poles of tangents to the parabola $a y^{2}+2 b^{2} x=0$ with respect to the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is the parabola $a y^{2}-2 b^{2} x=0$.

$$
5+5=10
$$

Group - B

(Marks:30)
Answer any three questions. $10 \times 3=30$
4. (a) Find the angle between the straight lines whose direction ratios are $(5,-12,13)$ and $(-3,4,5)$.
[Turn over]
(b) If $\left(l_{1}, m_{1}, n_{1}\right)$ and $\left(l_{2}, m_{2}, n_{2}\right)$ be the direction cosines of two perpendicular straight lines, then show that the direction cosines of the straight line perpendicular to both of them are

$$
\pm\left(m_{1} n_{2}-m_{2} n_{1}\right), \pm\left(n_{1} l_{2}-n_{2} l_{1}\right), \pm\left(l_{1} m_{2}-l_{2} m_{1}\right)
$$

5. (a) Find the equation of the plane passing through three points $(2,2,-1) ;(3,4,2)$ and $(7,0,6)$.
(b) Find the equation of the plane which passes through the point ($2,1,-1$) and is orthogonal to each of $x-y+z=1$ and $3 x+4 y-2 z=0$.

5+5
6. (a) Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{6}$.
(b) Find the values of b and c for which the straight line $\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z+3}{3}$ lies on the plane $9 x+b y+c z=30 . \quad 5+5$

[4]

7. (a) Find the condition that the straight lines $\frac{x}{\alpha}=\frac{y}{\beta}=\frac{z}{\gamma}$;

$$
\frac{x}{a \alpha}=\frac{y}{b \beta}=\frac{z}{c \gamma} \text { and } \frac{x}{l}=\frac{y}{m}=\frac{z}{n} \text { are coplanar. }
$$

(b) Find the shortest distance between the straight lines

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} .
$$

8. A sphere S has points $(0,1,0)$ and $(3,-5,2)$ as the opposite ends of a diameter. Find the equation of the sphere on which the intersection of the plane $5 x-2 y+4 z+7=0$ with S is a great circle.
