Ex/Comp.Sc/S/1/14/2017

Bachelor of Science Examination, 2017

(1st Year, 1st Semester)

COMPUTER SCIENCE

Unit - I

(Computer System and Organization)
Full Marks : 50

Time : Two Hours

The figures in the margin indicate full marks.
(Symbols have their usual meanings, if not mentioned otherwise)

1. Answer any two questions:
(a) Given the function

$$
T=\Sigma(0,1,2,3,4,6,7,8,9,11,15)
$$

(i) Show the map.
(ii) Find all prime implicants and indicate which are essential.
(iii) Find a minimal expression for T. Is it unique?
(b) (i) Find the values of the two-valued variables A, B, C and D by solving the equations

$$
\begin{aligned}
& A^{\prime}+A B=0 \quad A B=A C \\
& A B+A C^{\prime}+C D=C^{\prime} D .
\end{aligned}
$$

(ii) What is universal operation in the switching algebra?

Show that $f(A, B, C)=A^{\prime} B C+A B^{\prime}+B^{\prime} C^{\prime}$ is a universal operation. $4+4=8$
(c) Define (i) irredundant expression and (ii) prime implicant of a switching function. Prove that every irredundant sum-of-products of a switching function f is a union of prime implicants of f. $4+4=8$
2. Answer any two questions :
$7 \times 2=14$
(a) Give the truth table for the full-adder. Design the logic diagram for the full-adder.
$3+4=7$
(b) Draw the logic diagram of a 5 by 32 decoder constructed with four 3 by 8 decoder (with enable line) and one 2 by 4 decoder. Use the block diagram for the supplied decoders.

[3]

(c) Draw the logic diagram of a 16 by 1 multiplexer constructed with five 4 by 1 multiplexers. Use the block diagram for the supplied multiplexers.
3. Answer any two questions: $10 \times 2=20$
(a) Write the procedure for 2's complement substraction of two n-bit binary numbers M and N as minuend and subtrahend respectively. Prove the correctness. $5+5=10$
(b) How do you detect the overflow after the addition of two binary numbers each stored in signed-2's complement representation? Detect the overflow in the arithmetic operations $(+70)+(+80),(+70)+(-80),(-70)+(+80)$ and $(-70)+(-80)$. Assume that each number is accomodated in an 8-bit register with signed-2's complement representation. 4+6=10
(c) (i) Represent the decimal number $(+46.5)_{10}$ as a floating-point binary number in 24 bits having 16 bits for the normalized fraction mantissa and 8 bits for the exponent with signed-magnitude integer representation.
(ii) Represent $(8620)_{10}$ in (a) BCD; (b) excess-3 code; (c) as a binary number. $5+5=10$

