
c) Mention the reagents for the following transformations :

$$i) \qquad \stackrel{O}{\longrightarrow} \qquad \stackrel{OH}{\longrightarrow} \qquad Ph$$

ii)
$$COCl$$
 CO_2Et

iii)
$$\stackrel{O}{\longleftarrow}$$
 Me $\stackrel{Me}{\longleftarrow}$ $1+1+1$

d) How will you explain the relative rate of acetolysis of the following bicyclic compounds using CH_3CO_2K in acetone? $2\frac{1}{2}$

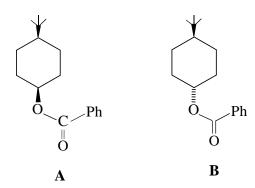
 $K_{rel}: 1 10^4 10^{11}$

FINAL B. Sc. Examination, 2017

(1st Semester)

CHEMISTRY (HONOURS)

PAPER - XII


ORGANIC CHEMISTRY

Time: Two hours Full Marks: 50

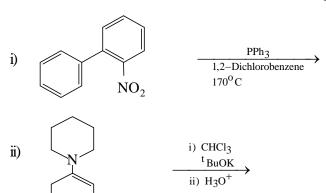
Use a separate answerscript for each group.

GROUP-A

- 1. a) Comment on the relative stability, chirality and optical activity of *cis*-1,2-dimethylcyclohexane and *trans*-1,2-dimethylcyclohexane. $2\frac{1}{2}+1+1\frac{1}{2}$
 - b) Between *cis*-and *trans*-1,2-dibromocyclohexane, which one will have higher dipole moment and why? $1\frac{1}{2}$
 - c) Which one of the following compounds **A** and **B** will undergo faster saponification and why?

d) Assign R/S to the following molecules indicating relative priority of the ligands. $1\frac{1}{2}+1\frac{1}{2}$

$$i) \begin{picture}(2000)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\line($$


- e) Assign topic descriptors to the diastereotopic hydrogens in S-2-butanol with a suitable diagram. $1\frac{1}{2}$
- f) Suggest an experiment to prove that using Wilkinson's catalyst, the hydrogenation of an olefinic bond occurs with syn-facial selectivity.
- g) Attempt *any one* of the following questions: 2
 - i) Predict the major product of the following reaction using Felkin-Anh model.

$$R - Ph CH(Me) CO Ph \xrightarrow{\text{MeLi in dry ether}} followed by$$
 aqueous work up

ii) Logically choose the correct enantiomer of 1-phenylethanol which can be used as a chiral auxiliary for the enantioselective synthesis of *S*-atrolactic acid (*S*-2-hydroxy-2-phenylpropanoic acid) through an appropriate pyruvate ester.

GROUP-B

3. a) Predict the product(s) of the following reactions and explain with plausible mechanism. $2\frac{1}{2}\times3$

iii)
$$Ph$$
O
 $TiCl_3$
 $Zn-Cu$

b) How can you carry out the following transformation? Explain with mechanism. $1\frac{1}{2}+1\frac{1}{2}$

[Turn over

[3]

- ii) What is meant by chemical shift in NMR? Why is it preferably expressed as ppm instead of Hz? 2
- iii) Mention how many types of proton peaks are obtained in the ¹H NMR of isopropylbenzene? Discuss on the corresponding spin multiplicity and relative position of peaks in the ¹H NMR spectrum?
- iv) Thermal decomposition at 560°C of compound $\bf C$ generates compounds $\bf D$ and $\bf E$. $2\frac{1}{2}$

$$\mathbf{E}$$
 (C₈H₇Cl)

[**D** reduces Tollens' reagent.]

Spectral properties of **D** and **E** are as follows:

D: IR: $\frac{1}{v}$ at $\sim 1700 \text{ cm}^{-1}$

 1 H – NMR (60 MHz, CCl₄ solvent) : δ 7.58 (4H) and 9.95 (1H) ppm.

 $\mathbf{E}: \mathbf{IR}: \mathbf{no} \ \overline{\mathbf{v}}_{\mathbf{C}=0}$

 1 H – NMR (CCl₄): δ 5.10 (1H), 5.51 (1H), 6.50 (1H) and 7.10 (4H) ppm.

With the help of spectroscopic properties deduce the structures of **D** and **E** and show how these are formed from **C**.

GROUP-B

- 2. a) i) N-H bond vibrates at a frequency 3400 cm⁻¹. Calculate the force constant of the bond. $1\frac{1}{2}$
 - ii) How are the following compounds distinguished by IR? Answer *any two*: $1\frac{1}{2} \times 2$
 - I. β -Aminobenzoic acid and 2-amino phenylacetic acid.
 - II. Diethyl ether and ethyl vinyl ether
 - III. Phenyl acetate and methyl benzoate
 - b) i) What is meant by hypsochromic shift in UV-vis spectroscopy?
 - ii) Discuss with diagram on the effect of polar solvent on $n \to \pi^*$ and O transitions. 2
 - iii) With the help of Woodward-rule deduce the λ_{max} of the following compounds :

c) i) Why does N-H appear as a broad peak in the corresponding ${}^{1}H-NMR$ Spectrum? $1\frac{1}{2}$ [Turn over