Ex/FCH/I/XIII/34/2017

FINAL B. Sc. EXAMINATION, 2017

(1st Semester) Chemistry (Honours) Paper - XIII Inorganic Chemistry

Time : Two hours

Full Marks : 50

Answer all questions

- a) In crystal field theory why the octahedral splitting is more predominant than tetrahedral splitting ? Calculate the CFSE of the octahedral Co(III) complexes in its paramagnetic and diamagnetic states. 2+1
 - b) What is Irving-Williams stability order and why Cu(II) system do not follow this stability order ? Does this affect the geometry of the Cu(II) octahedral complexes ? Explain with reason.
- 2. a) In brief explain how the mechanism of nuclear beta decay was established. $2\frac{1}{2}$
 - b) Discuss the energy terms associated with the concept of the liquid drop model of the nucleus. Which of these change significantly when a nucleus undergoes fission. 2

OR

Describe the formation and decay of the compound nucleus in artificial radioactivity describing important aspects. 2

[4]

OR

- MnO_2 is fused with fusion mixture with a pinch of KNO₃ followed by extraction in dil. H₂SO₄. Give balanced chemical reactions and explain with reasons of colour changes. 2
- b) What happens when CH₃I is added to THF solution of Fe(CO)₅ in presence of metallic sodium and AIEt₃ at dry oxygen free condition followed by passage of CO and addition of mineral acid ? Write chemical reaction of the steps.
- c) Upon addition of KCN to Co(II)-acetate solution a purple crystalline compound (A) is precipitated from green supernatant. Give the structure of species which show purple and green coloration. $1\frac{1}{2}$
- d) Write note on (any *one*):
 - i) Fe-NO complexes; ii) Dioxygen cobalt complexes;

 $1\frac{1}{2}$

- iii) Multinuclear manganese complexes
- 7. a) Name two ores of nickel.
 - b) Discuss the different steps involved in the extraction of nickel from Sadbury Ore.
 - c) Explain the procedures with reactions, in appropriate cases, the isolation of rhodium, iridium and osmium from the 'Concentrate'.

General Proficiency 1

- c) Mention two applications of gamma rays in analytical techniques. 1
- d) Mention three differences between fission and spallation reactions. $1\frac{1}{2}$

OR

What is fusion ? Discuss the process with regard to any one established mechanism. $1\frac{1}{2}$

- 3. a) What is Zeigler-Natta catalyst ? Discuss the probable mechanism for its functioning.
 - b) How very pure titanium can be extracted from its important ore ?
 - c) Magnetic susceptibility measurement indicates that chromium (II) acetate monohydrate is diamagnetic in nature. How will you take into account the observed result ?
 - d) Write a short note on polyvanadates. 2+2+1+2
- 4. a) The effective magnetic moment of *Mohr's* salt is 5.51BM at 300 K, higher than that of spin value only Explain?
 - b) Explain why the ferricyanide ion $[Fe(CN)_6]^{3-}$ displays two intense absorptions, one in the visible and one in the UV while the ferrocyanide ion $[Fe(CN)_6]^{4-}$ shows only one intense band in the UV. Address the nature of the

transition and to include a simple energy level diagram to aid your explanation.

- c) Determine the possible atomic term symbols arising from a $3s^{1}3d^{1}$ electron configuration. Give the degeneracy of each term symbol. 2+3+2
- 5. a) Find out the Symmetry Point group of the following species (any *four*):
 - i) XeO₃, ii) $[Cr(h^6-C_6H_6)_2]$, iii) XeF₅⁻, B₂H₆,
 - iv) $[Mn_2(CO)_{10}]$ v) H_2CCCH_2 , vi) *cis*- $[CoCl_2(en)_2]^+$
 - b) Construct the group multiplication table of C_{2h} point symmetry group with the aid of matrix multiplication.
 - c) Find out orbital symmetry notation of the following orbitals : The 2s and 2p (collinear with C₃ axis) AOs of boron in BF₃

OR

$$4d_{x^2-y^2}$$
 and $4d_{xy}$ AOs in $[PdCl_4]^{2-1}$

- d) Find out the genuine operations under S_3 symmetry element. 2+2+2+1
- 6. a) How do you synthesize pure KMnO₄? Standardization of KMnO₄ solution using standard oxalic acid solution shows that initial reaction is very slow under warm condition while reaction becomes faster with time. Explain.
 2

[Turn over