Full Marks: 25

- b) Describe Winkler's method to determine the dissolved oxygen in water sample.
- c) What do you understand by accuracy and precission of measurement? What is standard deviation?
- d) How do you explain the blue colour of slight excess I_2 in the presence of starch?
- e) What is ion-exchange chromatography? What are the fundamental requirements of a useful resin?
- f) How the velocities of mobile phase (u) and analyte \overline{v} are related to capacity factor (k') ? $1+2+1\frac{1}{2}+1\frac{1}{2}+1+1$
- 3. a) Calculate the amount of Fe²⁺ left at the end-point of a titration of 0·1(N) solution of Fe²⁺ with 25 mL of 0·1 (N) KMnO₄ in 2(N) H₂SO₄ medium.

[
$$E^{o}_{Fe^{3+}/Fe^{2+}} = 0.76 \text{ V}; E^{o}_{MnO_4^{-}/Mn^{2+}} = 1.52 \text{ V}$$
]

- b) "The EMF is more positive for the ${\rm Fe^{3+}/Fe^{2+}}$ couple in presence of O-phenathroline and more negative in presence of F⁻ as compared to EMF of the couple in absence of these species." Explain.
- c) What is ionization supressor? How does it function?
- d) Giving chemical reactions, suggest a volumetric method for estimation of vanadium. 3+2+2+2

FINAL B. Sc. Examination, 2017

(1st Semester)

CHEMISTRY (HONOURS)

PAPER - XIV

ANALYTICAL CHEMISTRY

Time: Two hours

Attempt all questions.

- 1. a) What do you mean by 'Polarographic Maxima'? Name a maximum suppressor.
 - b) What is $E_{\frac{1}{2}}$? State its features.
 - c) Describe the underlying principles of coulometric analysis. Distinguish between Primary coulometric analysis and secondary coulometric analysis.
 - d) Mention the potential window of DME. Show that for diffusion controlled polarographic experiment, i_d will be directly proportional to the square root of 'h'; where 'h' is the height of the DME. $1\frac{1}{2}+1\frac{1}{2}+2+3$
- 2. a) The titration of KMnO₄ by oxalic acid in HCl medium is not interfered by Cl^- oxidation however, the titration of Fe^{2+} by MnO_4^- in HCl is affected by Cl_2 liberation. How would you explain this observation?

[Turn over