g) i) Be₂ may exist at very low temperature. Comment. 1 OR

ii) What is meant by lithia water?

- 4. a) Predict the geometries of the following molecules explaining the causes of deviation from the regular geometry if any; any two:
 - i) $HXeO_4^-$ ii) $S_2O_3^{2-}$ iii) IF_5 iv) N_3^-
 - b) Draw the structures of *any two* of the followings: 1x2
 - a) CrO_5 b) P_4O_{10} c) $B_3N_3H_6$ d) S_4N_4
 - c) What are π -acid ligands? Draw the M.O diagram of CO molecules and justify the affinity towards metal ions.
 - d) Explain with the help of simple M.O diagram, that N_2 is diamagnetic whereas O_2 is paramagnetic.
 - e) In $(CH_3)_2PF_3$, the angle between the methyl groups is 124^0 Explain the fact.
 - f) Explain why 2
 - i) AlF_6^{3-} ion is well known but not BF_6^{3-} .
 - ii) Sulphur forms SF₆ but not SCl₆ or SH₆.

INTER B. Sc. Examination, 2017

(1st Semester)

CHEMISTRY (HONOURS)

PAPER - VII

INORGANIC CHEMISTRY

Time: Two hours Full Marks: 50

The figures in the margin indicate full marks.

Attempt all questions

1. a) Explain the heavy ion projectile induced reactions in the light of nucleon transfer and particle emission reactions.

 $1\frac{1}{2}$

- b) 'In the heavier nuclei the fission and spallation reactions may occur simultaneously explain with example. $1\frac{1}{2}$
- c) How would you differentiate between β -rays and cathode rays?
- d) Illustrate the experiments that lead Rutherford and Soddy to propose the theory of Radioactive disintegration.

OR

How would you determine the Avogadros' number from radioactive decay measurements?

Г	2	٦
ı	7	- 1

antineutrino?

2.

e) How would you establish the existence of neutrino and

f) The meson exchange is almost instantaneous and it cannot

2

	go	beyond the nucleus - explain.	2
g)	In the orbital electron capture, both fluorescence and		
	Αι	iger effect may occur - explain.	$2\frac{1}{2}$
a)	Answer <i>any one</i> of the following: $2\frac{1}{2}$		
	i)	State and explain Brönsted theory of bases.	acids and
	ii)	Comment, with logic, on the relative basic $N(CH_3)_3$ and $N(CF_3)_3$.	ity of NH ₃ ,
b)	i)	State the Pearson's HSAB principle, and	
		with example.	$2\frac{1}{2}$
	ii)	Give example of a reaction where this prin	ciple is not
		obeyed.	$1\frac{1}{2}$
c)	Ar	nswer any two of the following:	3+3
	i)	Describe, with a suitable example, ho	w H ⁺ ion
		concentration can influence the potential	of a redox
		reaction.	
	ii)	Describe, with appropriate example, th	e basis of
		choosing a suitable indicator for a redox tire	tration.

ii)	The E^0 value of the Cu^{2+}/Cu^0 half-cell is $0.34\ V$ and
	that of the Cu^{2+}/Cu^{+} half-cell is 0.15 V. Find out the
	E ⁰ value of the Cu ⁺ /Cu ⁰ half-cell.

- 3. a) Draw the MO energy level diagram for BeH₂.
 - b) Write the angular part of the wave function of d_z² orbital of H atom. Hence draw its shape.
 - c) Draw a Walsh diagram for linear and bent H_3 systems and hence predict the shape of H_3^- .

OR

Explain the ability of ethylene as a ligand with transition metals having filled π_d orbitals. Give example of one such complex.

- d) The solubility of BeO in water increases on adding aqueous BeSO₄ solution. Suggest a reason.
- e) Calcualte the exchange energy for p³ and f ⁶ electronic configurations in ground state.
- f) i) Show that the stability of the bonding orbital is less than the instability of the antibonding orbital of He_2 .

OR

ii) Find the energy of the bonding, non-bonding and antibonding orbitals in linear H_3 systems. 2

2