g) i) Be₂ may exist at very low temperature. Comment. 1 OR ii) What is meant by lithia water? - 4. a) Predict the geometries of the following molecules explaining the causes of deviation from the regular geometry if any; any two: - i) $HXeO_4^-$ ii) $S_2O_3^{2-}$ iii) IF_5 iv) N_3^- - b) Draw the structures of *any two* of the followings: 1x2 - a) CrO_5 b) P_4O_{10} c) $B_3N_3H_6$ d) S_4N_4 - c) What are π -acid ligands? Draw the M.O diagram of CO molecules and justify the affinity towards metal ions. - d) Explain with the help of simple M.O diagram, that N_2 is diamagnetic whereas O_2 is paramagnetic. - e) In $(CH_3)_2PF_3$, the angle between the methyl groups is 124^0 Explain the fact. - f) Explain why 2 - i) AlF_6^{3-} ion is well known but not BF_6^{3-} . - ii) Sulphur forms SF₆ but not SCl₆ or SH₆. ## INTER B. Sc. Examination, 2017 (1st Semester) ## **CHEMISTRY (HONOURS)** ## PAPER - VII ## INORGANIC CHEMISTRY Time: Two hours Full Marks: 50 ## The figures in the margin indicate full marks. ## Attempt all questions 1. a) Explain the heavy ion projectile induced reactions in the light of nucleon transfer and particle emission reactions. $1\frac{1}{2}$ - b) 'In the heavier nuclei the fission and spallation reactions may occur simultaneously explain with example. $1\frac{1}{2}$ - c) How would you differentiate between β -rays and cathode rays? - d) Illustrate the experiments that lead Rutherford and Soddy to propose the theory of Radioactive disintegration. ## OR How would you determine the Avogadros' number from radioactive decay measurements? | Г | 2 | ٦ | |---|---|-----| | ı | 7 | - 1 | antineutrino? 2. e) How would you establish the existence of neutrino and f) The meson exchange is almost instantaneous and it cannot 2 | | go | beyond the nucleus - explain. | 2 | |----|--|--|--------------------------| | g) | In the orbital electron capture, both fluorescence and | | | | | Αι | iger effect may occur - explain. | $2\frac{1}{2}$ | | a) | Answer <i>any one</i> of the following: $2\frac{1}{2}$ | | | | | i) | State and explain Brönsted theory of bases. | acids and | | | ii) | Comment, with logic, on the relative basic $N(CH_3)_3$ and $N(CF_3)_3$. | ity of NH ₃ , | | b) | i) | State the Pearson's HSAB principle, and | | | | | with example. | $2\frac{1}{2}$ | | | ii) | Give example of a reaction where this prin | ciple is not | | | | obeyed. | $1\frac{1}{2}$ | | c) | Ar | nswer any two of the following: | 3+3 | | | i) | Describe, with a suitable example, ho | w H ⁺ ion | | | | concentration can influence the potential | of a redox | | | | reaction. | | | | ii) | Describe, with appropriate example, th | e basis of | | | | choosing a suitable indicator for a redox tire | tration. | | ii) | The E^0 value of the Cu^{2+}/Cu^0 half-cell is $0.34\ V$ and | |-----|---| | | that of the Cu^{2+}/Cu^{+} half-cell is 0.15 V. Find out the | | | E ⁰ value of the Cu ⁺ /Cu ⁰ half-cell. | - 3. a) Draw the MO energy level diagram for BeH₂. - b) Write the angular part of the wave function of d_z² orbital of H atom. Hence draw its shape. - c) Draw a Walsh diagram for linear and bent H_3 systems and hence predict the shape of H_3^- . ## OR Explain the ability of ethylene as a ligand with transition metals having filled π_d orbitals. Give example of one such complex. - d) The solubility of BeO in water increases on adding aqueous BeSO₄ solution. Suggest a reason. - e) Calcualte the exchange energy for p³ and f ⁶ electronic configurations in ground state. - f) i) Show that the stability of the bonding orbital is less than the instability of the antibonding orbital of He_2 . #### OR ii) Find the energy of the bonding, non-bonding and antibonding orbitals in linear H_3 systems. 2 2