Ex/Int/CH/VS/19/2017

INTER B. SC. EXAMINATION, 2017

(1st Semester)

CHEMISTRY (SUBSIDIARY)

PAPER - VS

Time: Two hours

Full Marks: 50

Use a separate answerscript for each group.

GROUP-A

- 1. a) What are the necessary conditions for the efficiency of a heat engine to be unity and zero and what do these indicate ?
 - b) Write down an expression for the efficiency of a reversible engine and develop the concept of entropyfrom that expression.
 - c) Find the increase in the molar entropy of copper when it is heated from 127° C to 927° C. The molar specific heat of copper is given by $C_p = 6.2 + 0.0017$ T. 2+4+2
- 2. a) Derive the following Maxwell's relation :

 $(\delta T/\delta V)_{s} = -(\delta P/\delta S)_{v}$

b) Prove that $C_P = C_V$ for water at $+4^{\circ}C$. 2+2

Deduce thermodynamically a relation between heat of vapourization of a liquid and its vapour pressure.

[Turn over

GROUP - B

- 4. a) Why is *o*-nitrophenol more volatile compared to *p*nitrophenol? 2
 - b) Arrange the following compounds in order of increasing acid strength and give reason for your answer. 2

c) Predict the product(s) in the following reactions and explain with plausible mechanism (any *three*): 3×2

ii) $CH_3CH_2CH_2CN \xrightarrow{H_3O^+, \Delta}$

e) i) What is radioactive equilibrium ? Give the reason which is having more biochemical importance in between them :

- ii) Compare nuclear fission and nuclear fusion reactions. 2
- iii) The half life of a radioactive element is 5 days. Calculate the time in which its 1/40th of the amount will be lying behind. $1\frac{1}{2}$
- f) Write a short note on (*any one*): $1\frac{1}{2}$
 - i) Conduction of electricity in Be and Li metals with the help of a Band theory.
 - ii) Belt of nuclear stability.

[4]

g) What product do you expect from this reaction?

1

$$CH_{3} - CH_{3} - I + CH_{3}ONa \xrightarrow{\bigcirc} \Delta \rightarrow CH_{3}$$

GROUP - C

5. a) Predict the geometries of the following molecules explaining the causes of deviation from the regular geometry, if any; (*any two*): 2

i) XeO₃ ii) POCl₃ iii) CIF₃ iv) FClO₂

- b) Draw the simple M.O diagram of O_2 . Calculate the bond orders of O_2 , O_2^+ , O_2^- and O_2^{2-} , also comment on the magnetic moments of these. 3
- c) Why NO₂ will easily dimerise to stable N_2O_4 but ClO_2 will not. Compare the stability of N_2O_5 and Cl_2O_5 ? 2
- d) Explain why (*any two*): 1+1
 - i) $(SiH_3)_3N$ is a weaker base than $(CH_3)_3N$.
 - ii) PF_5 is well known but PH_5 is unknown.
 - iii) $HgCl_2$ is white but HgI_2 is crimson-red.

- d) Arrange the following acids in the increasing order of their acidic strength explain.
 CH₃CH(Cl)COOH, CH₃CH(NO₂)COOH, CH₃CH(CH₃)COOH
- e) Why is nitration of phenol carried out with dilute HNO_3 and not with conc. HNO_3 and conc. H_2SO_4 mixture?

 $1\frac{1}{2}$

f) Complete the following sequence of reactions. Identify the structures from [A] to [E]. $2\frac{1}{2}$

$$^{22}\text{Na}_{11}(t_{1/2} = 22.8 \text{ yrs}) \text{ and } ^{24}\text{Na}_{11}(t_{1/2} = 28.7 \text{ yrs})$$
$$[C] \xrightarrow{\text{Zn-dust}}_{\text{distilled}} [D] \xrightarrow{\text{Conc.HNO}_3}_{\text{Conc.H}_2\text{SO}_4} [E].$$

[Turn over

iii)

iv)