Ex/Int/CH/VIS/19/2017

INTER B. SC. EXAMINATION, 2017

(1st Semester)

CHEMISTRY (SUBSIDIARY)

PAPER - VIS

Time : Two hours

Full Marks : 50

Use a separate answerscript for each group.

GROUP-A

- a) State & explain Henry's law.
 b) The vapour pressure of two pure liquids A and B are 15000 and 30000 Nm⁻² at 298 K. Calculate the mole fraction of A and B in vapour phase when an equi-molar solution of the liquids is made.
 c) How can you explain depression of freezing point of a dilute solution?
 d) Osmotic pressure of a solution containing 7 gram of
 - d) Osmotic pressure of a solution containing 7 gram of dissolved protein per 100 cm^3 of a solution is 25 mm of Hg at 310 K. Calculate the molar mass of the protein. (R=0.0825 litre atm deg⁻¹ mol⁻¹). 2
- 2. a) Give the labeled phase diagram of water system and briefly discuss the salient points. Calculate the number of degree of freedom at the triple point.

[4]

GROUP - C

- 4. a) Write down the structures of the following compounds
 - i) XeF_6 ii) XeF_2 iii) XeO_4 iv) $XeOF_4$ 2
 - b) Which one between BBr₃ and BCl₃, is more acidic and why?
 3
 - c) Cite an example of each class of boron hydrides. Write down short note on B_2H_6 . 2+3
 - d) Write down the structures of
 - i) 15-crown-5 and (ii) [2.2.2] cryptand 1
 - e) What is electride ? Discuss with an example. 2
 - f) Write a short note on Beryllium chloride. 3

- b) The vapour pressure of water at 95°C is found to be 634 mm. What would be the vapour pressure at a temperature of 100°C ? The heat of vapourisation in this range of temperature may be taken as 40593 J mol⁻¹.
- c) Derive Nernst distribution law from thermodynamic consideration. 2

GROUP - B

- a) A student in the chemistry practical class dissolved aniline in chloroform, added few KOH beads to it and heated on a water bath. Suddenly, everybody in the class including the student had to run away. Why ? Explain this chemical reaction with mechanism.
 - b) How can you accomplish the following transformations ?
 (Only steps with reagents are required, no mechanism is necessary) 1+2+2

i)
$$RCH_2CH_2I \longrightarrow RCH_2CH_2NO_2$$

ii)

- c) What happens when MeCN is boiled with a concentrated aqueous solution of KOH ? Explain with mechanism.2
- d) How can one determine the concentration of a coloured compound in a solution using UV-vis spectroscopic technique?
- e) Distinguish the following compounds with UV spectroscopy. $1\frac{1}{2}$

 $CH_2 = CH_2$ and $CH_2 = CH - CH = CH_2$

- f) Logically suggest whether CO_2 is IR active or not. 2
- g) Distinguish the following compounds with IR spectroscopy. $1\frac{1}{2}$

CH₃CN and CH₃COCH₃

[Turn over