INTER B. Sc. Examination, 2017

(2nd Semester)

CHEMISTRY (SUBSIDIARY)

PAPER - VII S

Time: Two hours Full Marks: 50

Use a separate answerscript for each group.

GROUP-A

- a) Explain the term 'specific conductance'.
 - b) The resistance of a conductivity cell when filled with 0.02M KCl solution is 164 ohm at 298 K. However, when filled with 0.05 M AgNO₃ solution, its resistance is found to be 78.5 ohm. If specific conductance of 0.02 M KCl is 2.768×10⁻³ ohm⁻¹ cm⁻¹, calculate specific conductance of 0.05 M AgNO₃ solution and the molar conductance of AgNO₃ solution.
- 2. a) How can you calculate the solubility of AgCl solution by measuring conductance?

OR

The specific conductance of saturated solution of AgCl 25° C after subtracting the specific conductance of water is 2.28×10^{-4} S m¹. Calculate the solubility of AgCl in grams per dm³ at this temperature.

[Turn over

- [$\Lambda^{o}_{m(AgCl)} = 138.3 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1} \text{ and } M_{(AgCl)} = 143.5 \text{ g mol}^{-1}$]
- b) What is the effect of dilution on equivalent conductance?
- c) Draw and explain the conductometric titration curve for acetic acid by NaOH.
- 3. a) Derive Nernst equation for measuring EMF of a cell. 3
 OR

Represent schematically the cell made up of the following half cell reactions and information:

$$Mg \rightarrow Mg^{2+} (0.01 \text{ M}) + 2e^{-},$$
 $E^{0} = +2.34 \text{ volts}$
 $Sn^{2+} (0.1M) + 2e^{-} \rightarrow Sn,$ $E^{0} = -0.136 \text{ volts}$

Calculate the EMF of the above cell at 25°C.

b) How can you determine pH of a solution by EMF measurement using quinhydrone electrode?

OR

Calculate the free energy change of the following cell at 25°C.

3

$$Sn | Sn^{2+}(a = 0.6) || Pb^{2+}(a = 0.3) | Pb$$

Standard EMF of the cell is 0.014 volt.

i) [NiCl₄]²⁻ (paramagnetic corresponds to 2 unpaired electrons)

ii) $[CoF_6]^{3-}$ (paramagnetic corresponds to 4 unpaired electrons) 3

e) Give a brief account on (i) linkage and (ii) hydrate isomerism.

f) Draw an optically active coordination complex devoid of any C atom.

- c) Why do amino acids have high melting points?
- d) What is meant by isotactic polymer? Explain with an example.2
- e) Describe the steps involved in polymerisation of vinyl chloride (Cl) via free radical mechanism. 3

GROUP-C

- 5. a) Classify the ligands based on their denticity and cite one example for each case. Draw the structure of a complex compound containing a hexa-dentate ligand.
 - b) Write the IUPAC nomenclature of the following complexes (any three):

$$\left[\operatorname{Pt}(\operatorname{NH}_3)_4\right]\left[\operatorname{PtCl}_4\right],\left[\operatorname{CoF_3}\left(\operatorname{NMe_3}\right)_3\right],\left[\operatorname{Fe}\left(\operatorname{CO}\right)_5\right],\left[\operatorname{Al}(\operatorname{H}_2\operatorname{O})_5\left(\operatorname{OH}\right)\right]^{2+}$$

c) Draw all possible stereoisomers of [MA₂B₂C₂].

3

3

d) Applying Valence Bond theory, predict the geometry of

GROUP-B

Answer all the questions

4. a) Predict the products of the following reactions and explain with mechanism. $2\frac{1}{2}+2\frac{1}{2}$

i) PhCHO +
$$CO_2Et \xrightarrow{1) Zn, C_6H_6, \Delta}$$
 $CO_2Et \xrightarrow{2) H_3O^+}$

b) How can you carry out following transformations?

2+2+2

i)
$$CO_2Et$$
 \longrightarrow Ph CO_2Et

[Turn over