GROUP-C

3.	a)	Write a short note on anomalous Zeeman effect	4
		Or	

Calculate the de Broglie wavelength of a bullet $(m=2\times10^{-3} \text{ kg})$ moving with a speed of 450 m/s. Write the electronic configuration of Xe and Zn^{2+} .

- b) Find the ground state term symbols for 5B and 28Ni. 2
- c) Starting from the equation $\psi = A \sin(2\pi x/\lambda)$, arrive at the Schrödinger equation, $H\psi = E\psi$.
- d) Calculate the shortest wavelength of the absorption spectrum of deuterium ($R = 109737 \text{ cm}^{-1}$).
- e) Calculate the exchange energy for d⁴ and d⁵ configuration and hence comment on their stability.
- f) Write the angular part of the wave function of $d_{x^2-y^2}$ orbital of H atom. Hence draw the shape of it. 2

Or

The normal ionisation potential of hydrogen atom is 21.79×10^{-19} J. What will be the value of the ionisation potential when the electron is raised to the 2s level? 2

FIRST B. Sc. Examination, 2017

(1st Semester)

CHEMISTRY (SUBSIDIARY)

PAPER - IS

Time: Two hours Full Marks: 50

Use a separate answerscript for each group.

GROUP-A

- a) State two experimental evidences from which we can conclude that no gas behaves ideally at moderate temperature and pressure.
 - b) Using the relation $PV = \frac{1}{3} \text{mnc}^2$ with usual significance of the terms, prove that the mean kinetic energy of gas molecules is directly proportional to its absolute temperature for an ideal gas.
 - c) What is meant by reduced equation of state? Deduce the same for a gas obeying van der Waal's equation. What is the importance of such an equation? 2+4+1
 - d) Near critical temperature, a gas does not follow the vander Waal gas equation – Explain or criticize. 2
 - e) For carbon dioxide $T_c=300^{\circ}$ K and its critical density is 0.45 gm/c.c. Calculate van der Waal's constants 'a' and 'b'.

[Turn over

[3]

GROUP-B

- 2. a) Answer *any two* of the following questions : $2\frac{1}{2}x^2$
 - i) Between chloroform and dichloromethane which has higher dipole moment and why?
 - ii) Explain why the first pK_a of $HO_2C CH_2 CO_2H$ is much lower than CH_3CO_2H .
 - iii) Compare the C N bond lengths $(a \ vs. \ a')$ and $(b \ vs. \ b')$ in the following compounds:

$$O_2N$$
 a b NMe_2 & O_2N a' b' NMe_2 Me

b) Comment on the relative stabilities of the following pairs of carbocations (answer *any two*) $2\frac{1}{2}x2$

ii)
$$MeO-CH=CH-\overset{\oplus}{C}H_2$$
 and $H_2C=\overset{\oplus}{C}-\overset{\oplus}{C}H_2$
OMe

- iii) $H_3C \overset{\circ}{C} \overset{\oplus}{C} H_2$ and $H_3C \overset{\oplus}{C} CH_2 CH_3$ $\overset{\circ}{C} H_3$
- iv) $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0)$
- c) Account for the observation that in dimethyl sulfoxide (DMSO) the order of reactivity of halide ions with methyl bromide is $F^{\Theta} > CI^{\Theta} > Bi^{\Theta} > I^{\Theta}$ which is opposite to that observed in methanol solution.
- d) Predict the plausible product(s) of the following reactions: (answer *any two*) 2×2

i)
$$CH_3$$

 $H_3C - CH = CH_2 \xrightarrow{HBr}$
 CH_3

ii)
$$CH_3 - CH_2 - CH_2 - Br \xrightarrow{H_3CON_a \atop \text{in MeOH}}$$

[Turn over