B. PRODUCTION 4TH YEAR 1ST SEM. SUPPLEMENTARY EXAMINATION, 2017

SUBJECT: CNC MACHINES & ROBOTICS

Time: Three hours

Full Marks: 100

No. of questions	Answer any ten questions	Marks
1.	With neat sketches show the axis system in CNC lathe and CNC milling machine.	5+5
2.	Discuss the differences between point-to-point, straight line (paraxial) and continuous path (contouring) control in CNC	10
3.	Explain the need for position/displacement sensors for closed loop control of slide movement of CNC m/c tools. Explain the working principle of any position /displacement sensor for providing feedback for angular position of the axis leadscrew	5+5
4.	Write a manual part program to machine a circular slot as shown in fig. 1 in a CNC milling machine.	10
	80	

o. of stions		Marks
5.	Write a manual part program for turning a job for the finishing cycle as shown in fig. 2 in a CNC lathe.	10
6.	Show the basic components of a robot using a neat sketch of an industrial robot, indicating the locations of actuators and internal sensors for the various joints and the electrical interface between them & the various components of the robot controller.	10
7.	What do you mean by the working envelope of a robot? Draw the working envelopes for any two types of robot configuration	2+8
8.	Show the various robot configurations using neat sketches, stating their co-ordinate systems.	10
9.	Explain the need for internal sensors at each joint of a robot. Show any one mechanism of two fingered parallel jaw type robot grippers	5+5
10.	Calculate the minimum gripping force, to be exerted by each finger of a two-fingered parallel jaw type robot gripper to hold an object of weight of 2 kgf using friction. Also calculate the same for picking up the same object vertically upwards with an acceleration of 2 m/sec 2 . The co-efficient of friction, u = 0.2	10
11.	Why are additional 3 degrees of freedom required at the robot wrist? Show how this can be achieved, using a neat sketch	2+8
12.	Classify end effectors. Explain the working principle of magnetic gripper. State the applications of magnetic grippers in industry.	2+6+2