Ex/Prod/Math/T/211/2017(Old) (S)

Bachelor of Engineering in Production

Engineering Examination, 2017

(2nd Year, 1st Semester, Supplementary)

Mathematics - VS (Old)

Time: Three hours
Full Marks: 100
Answer any six questions.
Four marks are reserved for neatness.
(Notations have their usual meanings.)

1. a) Determine the analytic function whose real part is $e^{2 x}(x \operatorname{Cos} 2 y-y \operatorname{Sin} 2 y)$.
b) If $f(z)$ is a regular function of z, prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

2. a) Prove that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic. Find a function v such that $f(z)=u+i v$ is analytic.
b) Determine which of the following function are analytic

$$
\text { (i) } \mathrm{e}^{\mathrm{z}} \text {; (ii) } \operatorname{Sin} Z .
$$

3. a) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the paths $y=x^{2}$.
b) Prove that $\oint_{\mathrm{C}} \frac{\mathrm{dz}}{\mathrm{z}-\mathrm{a}}=2 \pi \mathrm{i}$
c) Prove that $\oint_{\mathrm{C}}(\mathrm{z}-\mathrm{a})^{\mathrm{n}} \mathrm{dz}=0$ [n is an integer] where C is the circle $|z-a|=r$ $5+5+6$
4. a) Evaluate $\oint_{\mathrm{C}} \frac{\mathrm{e}^{-\mathrm{z}}}{\mathrm{z}+1} \mathrm{dz}$, where C is the circle $|\mathrm{z}|=1 / 2$.
b) Evaluate $\oint_{C} \frac{3 z^{2}+z}{z^{2}-1} d z$, wehre C is the circle $|z-1|=1$.
5. a) Find the sum of the residues of the function $f(z)=\frac{\operatorname{Sin} Z}{Z \operatorname{Cos} Z}$ at its poles inside the circle $|z|=2$,
b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\operatorname{Cos} \theta}$.
6. a) Find the power series solution of the differential equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$ in power of x about $x=0$.
b) Prove that $e^{\frac{x}{2}}(t-1 / t)=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$
7. a) Find the powre series solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+\left(x^{2}+x\right) \frac{d y}{d x}+(x-9) y=0$
in power of x about $\mathrm{x}=0$.
b) Prove that $\left[\mathrm{J}_{1 / 2}(\mathrm{x})\right]^{2}+\left[\mathrm{J}_{-1 / 2}(\mathrm{x})\right]^{2}=\frac{2}{\pi \mathrm{x}}$.
8. a) Prove that $\int_{-1}^{1} P_{m}(n) P_{n}(n) d n=0$, when $m \neq n$

$$
=\frac{2}{2 \mathrm{n}+1} \text { when } \mathrm{m}=\mathrm{h} \text {. }
$$

b) Prove that $(2 \mathrm{n}+1) \mathrm{P}_{\mathrm{n}}(\mathrm{n})=\mathrm{P}_{\mathrm{n}+1}{ }^{\prime}(\mathrm{x})-\mathrm{P}_{\mathrm{n}-1}{ }^{\prime}(\mathrm{x}) \quad 10+6$
9. a) Prove that $\left[\mathrm{J}_{0}(\mathrm{n})\right]^{2}+2\left[\mathrm{~J}_{1}(\mathrm{n})\right]^{2}+2\left[\mathrm{~J}_{2}(\mathrm{n})\right]^{2}+\cdots=1$.
b) Prove that $\mathrm{x}^{4}=\frac{1}{35}\left[8 \mathrm{P}_{4}(\mathrm{n})+20 \mathrm{P}_{2}(\mathrm{n})+7 \mathrm{P}_{0}(\mathrm{n})\right]$.
c) Express $f(x)=x^{3}-5 x^{2}+x+2$ in terms of Legendre's polynomial.
$6+5+5$

