MATHEMATICS - IVS (OId)

Answer any 10 questions.

1. State Dirichlet's condition for a Fourier series expansion of function. Find the Fourier series for the function $f(x)$ defined by

$$
f(x)=x-x^{2},-\pi \leq x \leq \pi
$$

$$
\text { Hence deduce that } \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi}{12}
$$

2. Determine Fourier Series expansion of the function

$$
\begin{aligned}
f(x) & =2 \text { for } 0<x<\frac{2 \pi}{3} \\
& =1 \text { for } \frac{2 \pi}{3}<x<\frac{4 \pi}{3} \\
& =0 \text { for } \frac{4 \pi}{3}<x<2 \pi
\end{aligned}
$$

3. Find the Fourier Sine serles for

$$
\begin{aligned}
f(x) & =\frac{1}{4}-x \quad \text { for } 0<x<-\frac{1}{2} \\
& =x-\frac{3}{4} \quad \text { for } \quad \frac{1}{2}<x<1
\end{aligned}
$$

4. Obtain the half range Cosine series for

$$
\begin{aligned}
f(x) & =x \text { for } 0 \leq x \leq \frac{l}{2} \\
& =l-x \text { for } \frac{l}{2} \leq x \leq l
\end{aligned}
$$

5. a) If $\vec{r}=(a \cos t) \vec{\imath}+(\dot{a} \sin t) \vec{j}+(\operatorname{at} \tan \alpha) \vec{k}$, then find

$$
\left[\begin{array}{lll}
\frac{d \overrightarrow{7}}{d t} & \frac{d^{2} \vec{t}}{d t^{2}} & \frac{d^{3} \vec{t}}{d t^{3}}
\end{array}\right]
$$

b) Show that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

6 Prove that $\bar{\nabla} \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot(\bar{\nabla} \times \bar{A})-\bar{A} \cdot(\bar{\nabla} \times \bar{B}) 10$
7. State Green's theorem. Apply Green's theorem to evaluate

$$
\int_{\mathrm{c}}[(y-\operatorname{Sin} x) d x+\operatorname{Cos} x d y]
$$

where c is the triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2}{\pi} x$.
8. If $\bar{V}=2 x z \bar{l}+y^{2} \bar{j}+y z \bar{k}$, evaluate $\int \bar{V} \cdot \bar{n} d S$ where S is the surface of the cube bounded s

$$
\text { by } x=0, x=1, y=0, y=1, z=0, z=1 \text {. }
$$

9 State Gauss Divergence theorem.
Verify Gauss Divergence theorem for $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ and S is the surface of the cube bounded by $x=0, y=0, z=0$ and $x=a, y=a, z=a$.
10. A taut string of length l has its ends $x=0$ and $x=l$ fixed. The midpoint is taken to a small height h and released from rest at time $t=0$. Find the displacement function $y(x, t)$.
11. A homogeneous rod of conducting material of length l has its ends kept at zero temperature. The temperature at the centre is T and falls uniform to zero at the two ends. Find the temperature function $u(x, t)$.

12 A rectangular metal plate is bounded by the lines $x=0, x=a, y=0$, and $y=b$. The three sides $x=0, x=a$, and $y=b$. are insulated and the side $y=0$ is kept at temperatute $u_{0} \cos \left(\frac{\pi x}{a}\right)$. Show that the temperature in the steady state is

13 A rectangular metal plate is bounded by the lines $x=0, x=a, y=0$, and $y=b$. The three sides $x=0, x=a$, and $y=b$. are insulated and the side $y=0$ is kept at iemperatute $u_{0} \cos \left(\frac{\pi x}{a}\right)$. Show that the temperature in the steady state is

$$
\begin{equation*}
u(x, y)=u_{0} \operatorname{sech}\left(\frac{(b-a) \pi}{a}\right) \cosh \left(\frac{(b-y) \pi}{a}\right) \cos \left(\frac{\pi x}{a}\right) \tag{10}
\end{equation*}
$$

