Ex/Prod/Math/T/115/2017(Old) (S)

Bachelor of Engineering in Production

Engineering Examination, 2017
(1st Year, 1st Semester, Supplementary)

Mathematics - IIS (Old)

Time: Three hours
Full Marks: 100
(Notations/Symbols have their usual meanings)
Answer any ten questions.

1. a) If $\frac{1}{x+i y}+\frac{1}{u+i v}=1 ; x, y, u, v$ being real, express v in terms of x and y.
b) If $x+\frac{1}{x}=2 \cos \theta$, show that

$$
\frac{x^{2 n}+1}{x^{2 n-1}+x}=\frac{\operatorname{Cos} n \theta}{\operatorname{Cos}(n-1) \theta}
$$

c) Show that $\tanh ^{-1}(\cos \theta)=\cosh ^{-1}(\operatorname{cosec} \theta) . \quad 3+4+3$
2. a) Prove that

$$
\frac{(\cos 5 \theta-\mathrm{i} \sin 5 \theta)^{2}(\cos 7 \theta+\mathrm{i} \sin 7 \theta)^{-3}}{(\cos 4 \theta-\mathrm{i} \sin 4 \theta)^{9}(\cos \theta+\mathrm{i} \sin \theta)^{5}}=1
$$

b) Prove that

$$
\cos ^{7} \theta=\frac{1}{64}(\cos 7 \theta+7 \cos 5 \theta+21 \cos 3 \theta+35 \cos \theta) .
$$

c) If $z=x+i y$, find the real and imaginary parts of $\exp \left(z^{2}\right)$.
$4+4+2$
3. a) If $z=e^{i \theta}$, show that $\frac{z^{2}-1}{z^{2}+1}=i \tan \theta$.
b) If $\mathrm{u}=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, prove that
i) $\tanh \frac{\mathrm{u}}{2}=\tan \frac{\theta}{2}$
ii) $\theta=\mathrm{i} \log \tan \left(\frac{\pi}{4}+\frac{\mathrm{iu}}{2}\right)$.
4. a) Prove, without expanding, that
$\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{2}-\mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2}-\mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{c}^{2}-\mathrm{ab}\end{array}\right|$ vanishes.
b) Factorize $\Delta=\left|\begin{array}{llll}a^{3} & a^{2} & a & 1 \\ b^{3} & b^{2} & b & 1 \\ c^{3} & c^{2} & c & 1 \\ d^{3} & d^{2} & d & 1\end{array}\right|$
5. a) Show that every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrix.
11. a) Find the equation of the sphere through the points $(2,0,1),(1,-5,-1),(0,-2,3)$ and $(4,-1,2)$. Also find its centre and radius.
b) A sphere of constant radius k passes through the origin and meets the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the centroid of the triangle ABC lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$. $5+5$
12. a) Show that the condition that the curves $\mathrm{ax}^{2}+\mathrm{by}^{2}=1$ and $a^{\prime} x^{2}+b^{\prime} y^{2}=1$ should intersect orthogonally is

$$
\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{a}^{\prime}}-\frac{1}{\mathrm{~b}^{\prime}}
$$

b) Find the radius of curvature at the point $(3 \mathrm{a} / 2,3 \mathrm{a} / 2)$ to the curve $x^{3}+y^{3}=3 a x y$. $5+5$
8. a) A plane meets the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that the centroid of the triangle $A B C$ is the point (a, b, c).

Show that the equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$
b) Find in symmetrical form, the equations of the line

$$
\mathrm{x}+\mathrm{y}+\mathrm{z}+1=0,4 \mathrm{x}+\mathrm{y}-2 \mathrm{z}+2=0
$$

9. a) Show that the line $\frac{x-1}{3}=\frac{y+2}{-2}=\frac{z-1}{2}$ is parallel to the plane $2 \mathrm{x}+2 \mathrm{y}-\mathrm{z}=6$, and find the distance between them.
b) Prove that the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
are coplanar and find the equations of the plane containing them.
10. a) Find the shortest distance between the lines
$\frac{\mathrm{x}-\mathrm{x}_{1}}{l_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}_{1}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}_{1}}$ and $\frac{\mathrm{x}-\mathrm{x}_{2}}{l_{2}}=\frac{\mathrm{y}-\mathrm{y}_{2}}{\mathrm{~m}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{2}}{\mathrm{n}_{2}}$
b) Find the magnitude and equations of the shortest distance between the lines
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$.
$4+6$
b) Express the following matrix as the sum of a symmetric and a skew-symmetric matrix :

$$
\left[\begin{array}{ccc}
3 & -2 & 6 \\
2 & 7 & -1 \\
5 & 4 & 0
\end{array}\right]
$$

c) Solve the following equations by Cramer's rule : $x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6 \quad 3+2+5$
6. a) If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, find A^{-1}.
b) Solve the following equations by matrix method :
$3 x+4 y+5 z=4, x+2 y=-1,5 x+y+z=5$
7. a) Show that the straight lines whose direction cosines are given by the equations.
$\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0 \quad$ and $\quad \mathrm{fmn}+\mathrm{gnl}+\mathrm{hlm}=0 \quad$ are perpendicular if $\frac{\mathrm{f}}{\mathrm{a}}+\frac{\mathrm{g}}{\mathrm{b}}+\frac{\mathrm{h}}{\mathrm{c}}=0$
b) Find the equation of the plane which passes through the points $\mathrm{A}(0,1,1), \mathrm{B}(1,1,2)$ and $\mathrm{C}(-1,2,-2)$.
[Turn over

