B. Printing Engineering 2nd Yr. 1st Sem. Supplementary Exam – 2017 | Subject: Printing Electronics | Time: 3Hr. | Full Marks: 100 | |-------------------------------|------------|-----------------| | | | | ## Answer any 4 questions | 1. | a) Discuss the binary, octal and hexadecimal number systems. Also convert (567)₁₀ to the number system representations. b) Add +39 and -20 using 2's compliment method. c) Realize the circuit diagram of a full adder usinglogic gates. d) What are the universal gates and why are they called so? | ose
9
3
10
3 | |----|--|--------------------------| | 2. | a) Briefly write about Karnaugh map and simplify the following expression using the sar $F(a,b,c,d) = \sum m(1,3,5,7,9,12,13,15)$ | me.
15 | | | b) Realize a JK Flip-flop using SR flip-flop and other necessary logic circuits. | 10 | | 3. | a) Write about commutative, associative and distributive properties of Boolean algebra visuitable examples.b) Simplify the following expression using laws of Boolean algebra. | vith
12 | | | $F = AB + \overline{AC} + A\overline{BC}(AB + C)$ | 8 | | | b) Explain the principle of duality with suitable example. | 5 | | 4. | a) Realize the function of a full subtractor using a suitable decoder.
b) Realize the following logic functions using PLAs $f_1 = A.B.\overline{C} + \overline{A}.B.\overline{C}.\overline{D}$ | 12
13 | | | $f_2 = A + \overline{B}.C.D$ $f_3 = \overline{A}.B + C.D + \overline{B}.\overline{D}$ | | | | $f_3 = A.B + C.D + B.D$ $f_4 = f_1 + A.\overline{C}.D$ | | | 5. | a) Discuss different kinds of ROMs.b) What ismeant by sequential circuit?c) Write the differences between a synchronous counter and an asynchronous counter.d) What are fan in and fan out of logic gate? | 12
3
5
5 | | 5. | a) Realize $Y = A + BC\overline{D}$ using NAND gates. | 5 | | | b) Briefly write about working principle of 3-to-8 Decoder.c) Briefly write on successive approximation type A/D converter. | 10
10 |