(2nd Year, 2nd Semester)
Mathematics - IV R
Time : Three hours

Full Marks : 100 (50 marks for each part)

Use separate answer script for each part.

PART - I (50 marks)

Answer q.no. 1 and any four from the rest.

1. Give an example of a sequence which is bounded but not convergent.
2. (a) A sequence $\left\{u_{n}\right\}$ is defined by $u_{1}=\sqrt{2}$ and $u_{n+1}=\sqrt{2 u_{n}}$ for $n \geq 1$.

Prove that $\lim _{n \rightarrow \infty} \mathrm{u}_{\mathrm{n}}=2$.
(b) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1+\sqrt{2}+\sqrt[3]{3}+\ldots+\sqrt[n]{n}}{n}=1 \quad 6+6=12
$$

3. (a) Find the Fourier series expansion for $f(x)$, if and only if $(x)=x^{2},-1<x<1$.
(b) Express $f(x)=x$ as a half range sine series in $0<x<2$.
$6+6=12$
4. (a) Define monotonic increasing sequence. Show that the sequence $\{f(\mathrm{n})\}$ where
$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+\ldots .+\frac{1}{2 n}, n \geq 1$ is a monotonic increasing sequence.
(b) Prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}\right)=1
$$

$$
6+6=12
$$

5. (a) Test the convergence of the series

$$
\frac{1+2}{2^{3}}+\frac{1+2+3}{3^{3}}+\frac{1+2+3+4}{4^{3}}+\ldots
$$

(b) Test the convergence of the series

$$
\frac{1}{1.2^{2}}+\frac{1}{2.3^{2}}+\frac{1}{3.4^{2}}+\ldots
$$

10. (a) Let, $f=x^{3}+y^{3}+z^{3}$ be a scalar point function. Find
(i) The directional derivative of f at $(1,-1,2)$ in the direction of the vector $\hat{i}+2 \hat{j}+\hat{k}$.
(ii) Find the direction in which the directional derivatives is maximum at $(1,-1,2)$.
(iii) Find the maximum directional derivative at (1,-1,2).
(b) Determine the constant ' a ' so that, the vector $\vec{F}=(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+a z) \hat{k}$ is solonoidal. 2
(c) Find constants a,b,c such that the vector
$\vec{F}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$ becomes irrotational.
(d) Find the unit vector normal to the level surface given by $\phi(x, y, z)=x^{2}+y-z$ at the point $(1,0,0)$.
11. (a) Show that, $\vec{\nabla}^{2}\left(\frac{1}{r}\right)=0$, where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$.
(b) Prove that, if $\vec{\nabla}^{2} \phi=0$, then $\vec{\nabla} \phi$ is both solenoidal and irrotational, where ϕ has continuous 2nd order partial derivatives.
(b) Find the scalar product of two vectors given by two diagonals of a unit cube. What is the angle between them?

4
(c) Prove by vector method, that the median to the base of an isosceles triangle is perpendicular to the base.
(d) Show that,

$$
\begin{equation*}
(\vec{a} \times \vec{b})^{2}=|\vec{a}|^{2},|b|^{2}-(\vec{a} \cdot \vec{b})^{2} \tag{2}
\end{equation*}
$$

9. (a) Show that
$\left[\begin{array}{llll}\vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{a} \vec{b} & \vec{c}\end{array}\right]^{2}$
(b) Find the projection of the vector $\vec{A}=4 \hat{i}-3 \hat{j}+\hat{k}$ on the line passing through the points $(2,3,-1)$ and $(-2,-4,3)$.

4
(c) A particle, acted on by constant forces $\vec{F}_{1}=4 \hat{i}+\hat{j}-3 \hat{k}$ and $\vec{F}_{2}=3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $A(1,2,3)$ to the point $B(5,4,1)$. Find the work done by the forces on the particle.

4
(d) Find the magnitude of the moment about the point $A(3,-1,3)$ of a force vector $4 \hat{i}+2 \hat{j}+\hat{k}$ passing through $B(5,2,4)$.
6. (a) State D'Alembert's ratio test and Cauchy's root test.
(b) Test the convergence of the series

$$
1+\frac{1}{1!}+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\ldots
$$

7. (a) Test the convergence of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ by Leibnritz test.
(b) State the Sandwich theorem for sequence. Find the convergence and divergence behaviour of the sequence $\left\{r^{n}\right\}$ for different real values of r. $6+6=12$

PART - II (50 marks)

Answer q.no. 13 and any three from the rest.
8. (a) In the triangle $A B C$ on a plane, let $\overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\vec{b}$ and $\overrightarrow{A B}=\vec{c}$ Prove by vectors that
$\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ and $\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} B}{b}=\frac{\operatorname{Sin} C}{c}$
where, $a=|\vec{a}|, b=|\vec{b}|$ and $c=|\vec{c}|$.
$4+4=8$
(c) Suppose, $\overrightarrow{\mathrm{A}}=\left(3 \mathrm{x}^{2}+6 y\right) \hat{\mathrm{i}}-(14 y z) \hat{j}+\left(20 x z^{2}\right) \hat{\mathrm{k}}$

Evaluate, $\int_{c} \vec{A}$. $\mathrm{d} \overrightarrow{\mathrm{r}}$ from $(0,0,0)$ to $(1,1,1)$ along the path given by the straight lines joining $(0,0,0)$ to $(1,0,0)$ to $(1,1,0)$ to $(1,1,1)$.
12. (a) State Stoke's theorem.
(b) Verify Green's theorem in the plane for
$\oint_{c}[(y-\sin x) d x+\cos x d y]$ where C is the triangle with vertices $A\left(\frac{\pi}{2}, 0\right), B\left(\frac{\pi}{2}, 1\right)$ and $0(0,0)$. 6
(c) Let, $\overrightarrow{\mathrm{F}}=(4 \mathrm{xz}) \hat{\mathrm{i}}-\left(\mathrm{y}^{2}\right) \hat{\mathrm{j}}+(\mathrm{yz}) \hat{\mathrm{k}}$.

Evaluate $\iint_{S}(\overrightarrow{\mathrm{~F}} . \hat{\mathrm{n}}) \mathrm{ds}$ where, S is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$ and \hat{n} is the outward drawn unit normal to the surface.

7
13. Find the volume of the parallelopiped with edges represented by the vectors,
$\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+2 \hat{j}-\hat{k}, C \vec{C}=3 \hat{i}-\hat{j}+2 \hat{k}$ 2

