BACHELOR OF PRINTING ENGINEERING EXAMINATION, 2017
(1st Year, 1st Semester, Supplementary)
Mathematics-IR
Time : Three hours
Full Marks : 100

Answer any five questions.
All questions carry equal marks.

1. (a) Prove that $f(x)=|x|$ is continuous at $x=0$ but not differentiable at $x=0$.
(b) Show that $\operatorname{Lt}_{x \rightarrow 0} \sin 1 / x$ does not exist.
(c) Find the values of a and b such that

$$
f(x)=\left\{\begin{array}{c}
3 a x+b, x<0 \\
5+3 \operatorname{Sin} x, x>0
\end{array}\right.
$$

is differentiable at $x=0$.
(d) Find $\frac{d^{n} y}{d x^{n}}$ where $y=\log x$.
2. (a) State Rolle's Theorem. If $\varphi(x)$ is a polynomial and λ is real, then there exists a root of $\varphi^{\prime}(x)+\lambda \varphi(x)=0$ between any pair of roots of $\varphi(x)=0$.
(b) Prove that $\frac{x}{1+x}<\ln (1+x)<x, \forall x>0$.
(c) Show that $f(x)=x^{3}-6 x^{2}+12 x+50$ has neither a maximum nor a minimum at $x=2$.
3. (a) If $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\operatorname{Sin} 2 x+a \operatorname{Sin} x}{x^{3}}$: be finite then find the value of a and the limit.
(b) Find $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x}$.
(c) State Taylor's theorem.
(d) Expand $e^{\sin x}$ in Taylor's series as far as term containing x^{3}.
4. (a) Evaluate
(i) $\int_{0}^{1} x^{3}\left(1-x^{2}\right)^{5 / 2} d x$
(ii) $\int_{0}^{\pi / 2} \sin ^{4} x \operatorname{Cos}^{4} x d x$
(iii) $\int_{0}^{\pi / 2} \sqrt{\tan x} d x$
(b) Show that $\int_{0}^{\pi / 2} \operatorname{Cos}^{4} x d x=\frac{3 \pi}{16}$.
5. (a) Evaluate $\underset{y \rightarrow 0}{\operatorname{Lt}} \underset{x \rightarrow 0}{\operatorname{Lt}} f(x)$ and $\underset{x \rightarrow 0}{\operatorname{Lt}} \underset{y \rightarrow 0}{\operatorname{Lt}} f(x)$ where $f(x)=\frac{x+y}{x-y}$. Does the $\underset{\substack{x \rightarrow 0 \\ y \rightarrow 0}}{\operatorname{Lt}} f(x)$ exists ? Justify.
(b) If $u(x, t)=e^{-t} \operatorname{Sin} x$, find the value of $\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}$.
(c) If $z=y \operatorname{Cos} x y$ then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
6. (a) If $u=\operatorname{Sin}^{-1}\left(\frac{x+y}{x-y}\right)$ then find the value of $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0$.
(b) If $u=(a x+b y)^{2}-\left(x^{2}+y^{2}\right)$ where $a^{2}+b^{2}=2$ show that $u_{x x}+u_{y y}=0$.
(c) If $u=\operatorname{Sin}^{-1} \frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$ then find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.

