- 7. (a) Find the extreme values of $f(x, y) = x^3 3xy + y^3$.
 - (b) Find the length of the curve $y = \log \sec x$ between x = 0 and $x = \frac{\pi}{3}$.
 - (c) Evaluate

 $\iint_R Sin(x+y)dx\,dy\,over\,R:\left\{0\leq x\leq \pi/2\;;\;0\leq y\leq \pi/2\right\}$

- 8. (a) Find the volume of solid formed by rotation of an elupse $\frac{x^2}{2^2} + \frac{y^2}{2^2} = 1$ about minor axis.
 - (b) Show that area bounded by $y^2 = 4ax$ and $x^2 = 4ay$ is $16a^2/3$.
 - (c) Evaluate $\int_{0}^{4} e^{x} dx$ taking 4 subintervals by
 - (i) Simpson's one third rule
 - (ii) Trapezoidal rule.

____ X ____

Ex./PRN/MATH/T/112/2017(S)

BACHELOR OF PRINTING ENGINEERING EXAMINATION, 2017

(1st Year, 1st Semester, Supplementary)

Mathematics - I R

Time : Three hours

Full Marks : 100

Answer any *five* questions.

All questions carry equal marks.

- (a) Prove that f(x) = |x| is continuous at x = 0 but not differentiable at x = 0.
 - (b) Show that $\underset{x\to 0}{Lt} \sin \frac{1}{x}$ does not exist.
 - (c) Find the values of a and b such that

 $f(x) = \begin{cases} 3ax+b, x < 0\\ 5+3Sinx, x > 0 \end{cases}$

is differentiable at x = 0.

(d) Find
$$\frac{d^n y}{dx^n}$$
 where y = log x.

2. (a) State Rolle's Theorem. If $\varphi(x)$ is a polynomial and λ is real, then there exists a root of $\varphi'(x) + \lambda \varphi(x) = 0$ between any pair of roots of $\varphi(x) = 0$.

(b) Prove that
$$\frac{x}{1+x} < \ln(1+x) < x, \forall x > 0$$

- (c) Show that $f(x) = x^3 6x^2 + 12x + 50$ has neither a maximum nor a minimum at x = 2.
- 3. (a) If $\underset{x\to 0}{\text{Lt}} \frac{\text{Sin} 2x + a \text{Sin} x}{x^3}$: be finite then find the value of a and the limit.

(b) Find $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$.

- (c) State Taylor's theorem.
- (d) Expand $e^{\sin x}$ in Taylor's series as far as term containing x^3 .
- 4. (a) Evaluate

(i)
$$\int_{0}^{1} x^{3} (1 - x^{2})^{5/2} dx$$

(ii) $\int_{0}^{\pi/2} \sin^{4} x \cos^{4} x dx$
(iii) $\int_{0}^{\pi/2} \sqrt{\tan x} dx$

(b) Show that
$$\int_{0}^{\frac{\pi}{2}} \cos^4 x \, dx = \frac{3\pi}{16}.$$

- 5. (a) Evaluate $\lim_{y \to 0} \lim_{x \to 0} f(x)$ and $\lim_{x \to 0} \lim_{y \to 0} f(x)$ where $f(x) = \frac{x+y}{x-y}$. Does the $\lim_{x \to 0} f(x)$ exists? Justify. (b) If $u(x,t) = e^{-t} \sin x$, find the value of $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2}$. (c) If $z = y \cos xy$ then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 6. (a) If $u = Sin^{-1}\left(\frac{x+y}{x-y}\right)$ then find the value of $x^2u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0.$ (b) If $u = (ax + by)^2 - (x^2 + y^2)$ where $a^2 + b^2 = 2$ show that $u_{xx} + u_{yy} = 0.$ (c) If $u = Sin^{-1}\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$ then find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}.$ (Turn over)