BACHELOR PRINTING ENGINEERING EXAMINATION, 2017 (1st Year, 2nd Semester)

Electronics

Time: Three hours

Full Marks: 100

Instruction:

- 1. Answer any five questions out of 8 questions.
- 2. Answers of sub questions of any questions should be written in one place. Do not be haphazard.
- 1) a) Define mobility and it's SI unit. Why mobility of electron is greater then that of hole in a semiconductor?

Find Resistivity of an intrinsic Si-bar with following data:

Intrinsic carrier concentration = 1.5×10^3 /cc Electronic Charge = 1.6×10^{-19} C

Electron Mobility = $1400 \text{ cm}^2 / \text{V.Sec.}$

Hole Mobility = $450 \text{ cm}^2/\text{ V.Sec.}$

(1+1+3+5=10)

- b) A Si-diode is applied with a forward bias voltage V. Draw tentative characteristic (FB) curves of it, if it be (1) real diode, (2) approximate model diode (3) ideal model diode. (2x3 = 6)
- c) Calculate (with argument) the net voltage and current in the circuit in fig.-I of APPENDIX. (4)
- 2) a) Define rectification efficiency (η) of a diode rectifier deduce an expression for (η) of a half-wave rectifier in terms of circuit parameters and show that its maximum value may be 40.5%.

(2+6+2=10)

(6)

- b) Draw the equivalent circuit of the Si-rectifier given in fig.- II of APPENDIX where $r_f=10~\Omega$ and $V_b=0.7V$ Hence calculate peak current in the circuit and peak O/P voltage. What will be these values if the diode be an ideal one. (2+2x2+2x2 = 10)
- a) Draw circuit diagram of a bridge-rectifier and briefly explain it action. Also show the nature of O/P voltage if its I/P voltage be sinusoidal.
 - b) Discuss temperature dependence of characteristic curve of a diode.
 - c) What is a clipper circuit? Draw a combination clipper circuit using two real diodes showing the nature of its O/P with a sinusoidal I/P voltage. (2x3 = 6)
- 4) a) Why NPN transistor is more useful than PNP? Draw double diode analogy circuit of a NPN transistor and write down the transistor equations from the circuit. (2x3 = 6)
 - b) Draw I/P and O/P characteristic curves of a NPN transistor (CE Configuration) and discuss their similarities with diode characteristics. Define I/P and O/P resistance of transistor from these curves.

(2x2+3+2=9)

c) Copy fig.- III of APPENDIX and calculate $I_B,\,I_C,\,I_E$ and V_{CE} .

(5)

5)) Draw a neat diagram of single stage amplifier circuit using a single battery (self bias). Mention the	
	phasal nature of O/P voltages at its two O/P ends. Also br	riefly discuss the functions of various
	capacitors present in the circuit.	(4+2+3=9)

b) Draw the DC and AC equivalent circuits of the above amplifier.

(3+3=6)

- c) Referred to the DC equivalent circuit as above, deduce the equation of DC lode line of the amplifier.(5)
- 6) a) Define lower cut-off and upper cut-off frequency of an amplifier. Why are they also called 3dB frequencies? What is dB power gain? Calculate dB power gain of an amplifier with 59% amplification.

 (2x2+3+2+2=11)
 - b) In an amplifier the max. power gain = 90dB at 2KHz and gain falls to 87dB at 200Hz and 3.5KHz. What is the band width of the amplifier? Answer with reasons. (2)
 - c) A Zener diode of unregulated power supply has the following ratings: $V_z = 6.8V$, $r_z = 2 ()$ at $I_z = 50$ mA. If maxm. source current = 150mA and load current varies from $I_L(min) = 10$ mA to $I_L(max) = 120$ mA, what would be the variation of load voltage and % regulation? (7)
- 7) a) Write down fundamental equation of feedback amplifier (No deduction). Hence define positive and negative feedback. Also establish the statement "Negative Feedback improves bandwidth at the cost of gain".

 (1+2+3 = 6)
 - b) From fundamental equation of feedback show that % variation of gain with feedback is less than the same without feedback if the feedback be negative. (7)
 - c) An amplifier has a open loop gain = 400 and negative feedback = 10%. It open loop gain changes by 20%, find the % change in closed loop gain and sacrifice factor (7)
- 8) a) Why an OPAMP is named as OPAMP? Mention 4 special features of an ideal OPAMP. (2+4=6)
 - b) Discuss the functions of two I/P ideal OPAMP as:
 - Inverting amplifier and unit inverter (3+1 = 4)
 - 2) Voltage Subtractor

(5)

3) Inverting Summing Amplifier

(5)

APPENDIX

 $D_i - D_2$ are Si Diodes T_f negligible. $V_4 = 0.7 V$.

Fig-I

Fig-IL

VBE negligitle

Fig-III.

the

and

ous

= 9)

ier.

59%

(7)

s by (7)