## B. Power Engineering 4th YR, 1ST SEM. Supplementary EXAM.- 2017 Subject: Non-Conventional Power Generation-II Time: Three Hours Full Marks: 100

## Answer any FIVE questions

| No. of<br>Questions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mark |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.a)                | Briefly explain different electrical power generation schemes using wind turbine.                                                                                                                                                                                                                                                                                                                                                                                 | 8    |
| b)                  | Briefly explain showing the power coefficient (Cp) Vs. interference factor (a) for wind turbine.                                                                                                                                                                                                                                                                                                                                                                  | 4    |
| c)                  | The horizontal axis wind turbine (HAWT) is installed at a location having wind velocity of 16 m/s. The 120 m diameter rotor has three blades attached to the hub. Find the rotational speed of turbine for optimum energy extraction.                                                                                                                                                                                                                             | 8    |
| 2.a)                | speed wind turbine with block diagram.                                                                                                                                                                                                                                                                                                                                                                                                                            | 10   |
| b)                  | Draw a basic figure of vertical axis wind turbine.                                                                                                                                                                                                                                                                                                                                                                                                                | 2    |
| c)                  | A propeller type wind turbine has the following data: speed of free wind at a height of 15 m is 18 m/s, air density is 1.45 kg/m³, surface roughness (a) is 0.15, height of tower is 120 m, diameter of rotor is 80 m, wind velocity at turbine reduces by 10%, generator efficiency is 75%. a) Find total available wind power, b) power extracted by the turbine, c) electrical power generated, d) axial thrust on turbine, e)maximum axial thrust on turbine. | 8    |
| 3.a)                | State the constructional difference of major components are used in Ocean Thermal Power Plant (OTPP) in respect of those are used in conventional thermal power plant.                                                                                                                                                                                                                                                                                            | 8    |
| b)                  | State the ideal characteristics of working fluid that is used in OTPP along with name.                                                                                                                                                                                                                                                                                                                                                                            | 3+1  |
| c)                  | Briefly explain how the markets had been developed regarding OTPP.                                                                                                                                                                                                                                                                                                                                                                                                | 4    |
| d)                  | Why sea water is corrosive & how this problem is rectified?                                                                                                                                                                                                                                                                                                                                                                                                       | 2+2  |
| 4.a)                | Derive the expression of total wave power per unit width across wave front of water surface of natural ocean wave resource.                                                                                                                                                                                                                                                                                                                                       | 8    |
| <b>b</b> )          | What are the challenges have to be faced for extracting wave power?                                                                                                                                                                                                                                                                                                                                                                                               | 4    |
| c)                  | Calculate the following for deep Atlantic Ocean wave having wave length 50 m & amplitude 1.2 m, water density 1025 kg/m <sup>3</sup> :-                                                                                                                                                                                                                                                                                                                           | 8    |
|                     | i) Phase velocity, ii) Group velocity, iii) Total energy per unit area of wave surface, iv) Power develops per unit width across wave front.                                                                                                                                                                                                                                                                                                                      |      |
| 5.a)                | Classify & define geothermal region.                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    |

Ref. No.: EX/PE/T/414/2017(S)

## B. Power Engineering 4<sup>th</sup> YR, 1ST SEM. Supplementary EXAM.- 2017 Subject: Non-Conventional Power Generation-II Time: Three Hours Full Marks: 100

## Answer any FIVE questions

| b)   | Define: a) main features of tectonic plates, b) continental drift, c) temperature gradient                                                                                                                                                                                                                                   | 3×2=6  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| c)   | Classify electrical power generation schemes using geothermal power & briefly explain any one scheme with a neat figure.                                                                                                                                                                                                     | 2+8    |
| 6.a) | For dry hot rock granite derive the expression of the following:- i) Useful heat content, ii) Time constant of heat extraction, iii) Heat extraction rate.                                                                                                                                                                   | 4×3=12 |
| b)   | Calculate the following of a dry rock granite to a depth of 7Km. Take the Geothermal temperature gradient is at $40^{\circ}$ K/Km, minimum useful temperature is $140^{\circ}$ K above the surface temperature $T_o$ , rock density $(\rho_r)=2700 \text{ kg/m}^3$ , Specific heat capacity( $C_r$ )=820 J/kg/ $^{\circ}$ K. | 8      |
|      | i) Useful heat content per square kilometer, ii) Time constant of heat extraction using water flow at a rate of 1 m³/sec/km², iii) Useful heat extraction rate at initially & after 10 years. Assume water density 1000 kg/m³& specific heat capacity 4200 J/kg/°K.                                                          |        |
| 7.a) | Briefly state the name of different energy storage methods with their examples.                                                                                                                                                                                                                                              | 2+2=4  |
| b)   | Briefly explain different major energy storage methods.                                                                                                                                                                                                                                                                      | 16     |