BACHELOR OF POWER ENGINEERING EXAMINATION, 2017

(3rd Year, 1st Semester, Supplementary)

Combustion & Pollution (Old Syllabus)

Time: Three hours

Full Marks: 100

Answer any five questions.

- 1. a) Define equivalence ratio. How is it related to percentage theoretical air and percentage excess air? (2+6)
 - b) Propane is burnt in excess air so that complete combustion of the fuel takes place. If the product gas analysis on dry basis shows 85% nitrogen by volume, what is the percentage of excess air supplied? What will be the nitrogen percentage in the product gas by mass and on wet basis? (12)
- 2. a) What is the difference between "enthalpy of formation" and "enthalpy of combustion" of a fuel? Enthalpy of formation of CO₂ is equal to the enthalpy of combustion of carbon Justify. (4+4)
 - b) Determine the adiabatic flame temperature when a furnace is operating at an air-fuel ratio of 16 (by mass) with fuel injected at reference temperature and air preheated to 600 K. Assume the following simplified thermodynamic properties: $T_{\text{ref}}=300 \text{ K}$, $MW_{\text{fuel}}=MW_{\text{air}}=MW_{\text{prod}}=29 \text{ kg/kmol}$, $c_{\rho,\text{fuel}}=c_{\rho,\text{air}}=c_{\rho,\text{prod}}=1200 \text{ J/kg-K}$, $\overline{h}_{F_{air}}^0=\overline{h}_{F_{prod}}^0=0$, $\overline{h}_{F_{fuel}}^0=4\times10^7 \text{ J/kg}$. (12)
- 3. a) Define equilibrium constant. Derive its relation with the standard state Gibbs function change in a reaction? (2+8)
 - b) Carbon monoxide reacts with 150% theoretical air in a combustor to give products at high temperature and 1 atm pressure. If the relative concentration of CO and CO₂ in the product mixture is in the ratio of 3:5, find the value of the equilibrium constant for the CO oxidation process. If instead of air, 150% theoretical oxygen is used and the same temperature is maintained, what would have been the relative concentrations of CO and CO₂?
- 4. a) Define the rate of a combustion reaction. What is specific reaction rate and how is it represented by the Arrhenius equation? What are the significances of the terms in the Arrhenius equation? (2+4+4)
 - b) Ethylene (C_2H_4) air mixture having equivalence ratio of 0.85 is burned in a steady state steady flow well stirred reactor. The flow rate of the reactant mixture is 1.8 kg/min and the volume of the reactor is 675 cm³. The product gas analysis at the exit of the reactor shows 800 ppm ethylene by mass. Determine (i) the rate of reaction within the reactor, (ii) mass fractions of O_2 and CO_2 in the product gas from the reactor. Assume that the fuel, which has burned, burned completely.
- 5. a) What is thickness of a laminar premixed flame? What are the zones in a laminar premixed flame? Explain the differences between these zones.
 - b) What do you mean by flash back and blow off of a premixed flame on a burner? When do you observe these two phenomena in a flame?
- 6. a) Define burning velocity of a premixed fuel-air mixture. How does the burning velocity depend on the equivalence ratio of the mixture and why?

 (2+6)
 - b) What do you mean by constant diameter burning of coal char? When is such burning relevant? Derive an expression for the char burn out time under this model.

 (2+2+8)
- 7. a) Discuss the adverse effects of the major combustion generated pollutants on environment and life. (10)
 - b) Discuss the routes of formation of NO_x in combustion and the methods of controlling it. (10)

Table: 1 - Heat of formation and Heating Values

Species	Enthalpy of Formation (kJ/kmol)	Higher Heating Value (kJ/kg)	Lower Heating Value
CO ₂	- 393520	(K37Kg)	(kJ/kg)
$H_2O(v)$	- 241820	<u>.</u>	
$H_2O(1)$	-285830	<u> </u>	
CO	- 110530		
C₂H ₆	- 84667	51901	47400
C_3H_8	- 103847	50368	47489
$C_6H_6(g)$	82930	42270	46357
$C_8H_{18}(g)$	-208450		40580
	200430	48260	44790

Table-2: $\Delta h = \left(h_T^0 - h_{298}^0\right)$ at different temperatures for species

Temperature (K)	$\Delta h = \left(h_T^0 - h_{298}^0\right) (kJ/kmol)$					
	CO_2	CO	H ₂ O	O ₂	N ₂	
298	0			<u> </u>	<u> </u>	
500	8,301	0	0	0	0	
800		5,943	6,947	6,097	5,920	
	22,810	15,176	18,005	15,838	15,046	
1000	33,425	21,697	25,993			
1500	61,681	38,847		22,721	21,468	
2000	91,420		48,181	40,590	38,404	
	71,420	56,737	72,805	59,169	56.130	