BACHELOR OF POWER ENGINEERING EXAMINATION, 2017

(1st Year, 1st Semester, Supplementary)
Mathematics - II Q
Time : Three hours
Full Marks : 100

Notations / Symbols have their usual meanings.
Answer any ten questions.

1. (a) Find the complex number z, such that $\arg (z+1)=\frac{\pi}{6}$ and $\arg (z-1)=\frac{2 \pi}{3}$.
(b) If $x+\frac{1}{x}=2 \operatorname{Cos} \theta$, then find $x^{r}+\frac{1}{x^{r}}$.
(c) Simplify

$$
\frac{(\cos 5 \theta-i \sin 5 \theta)^{2}(\cos 7 \theta+i \sin 7 \theta)^{-3}}{(\cos 4 \theta-i \sin 4 \theta)^{9}(\cos \theta+i \sin \theta)^{5}} \quad 3+4+3
$$

2. (a) Show that

$$
\operatorname{Cos}^{7} \theta=\frac{1}{16}(\operatorname{Cos} 7 \theta+7 \operatorname{Cos} 5 \theta+21 \operatorname{Cos} 3 \theta+35 \operatorname{Cos} \theta)
$$

(b) If $u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, prove that

$$
\theta=-i \log \tan \left(\frac{\pi}{4}+\frac{i u}{2}\right)
$$

(c) If $z=a^{i \theta}$, show that $\frac{z^{2}-1}{z^{2}+1}=i \tan \theta$.
3. (a) Prove that

$$
\left|\begin{array}{cccc}
1+a & 1 & 1 & 1 \\
1 & 1+b & 1 & 1 \\
1 & 1 & 1+c & 1 \\
1 & 1 & 1 & 1+d
\end{array}\right|=\operatorname{abcd}\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)
$$

(b)

$$
\left[\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right] \text { and } I \text { is the unit matrix }
$$ of order 3 , then evaluate $A^{2}-3 A+9 I$.

(5)
10. Obtain the various possible solutions of the onedimensional wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

by the method of separation of variables. Which one of these solutions is appropriate with the physical nature of the equation? Justify your answer.
11. Solve the equation

$$
u_{t}=u_{x x}
$$

subject to the conditions $u(x, 0)=3 \sin n n x, u(0, t)=0$ and $\mathrm{u}(1, \mathrm{t})=0$, where $0<\mathrm{x}<1, \mathrm{t}>0$.
12. Find the general solutions of the PDEs :
(a) $(z-y) p+(x-z) q=y-x$
(b) $x p-y q=y^{2}-x^{2}$
(c) $y^{2} p-x y q=x(z-2 y)$
4. (a) If

$$
\left|\begin{array}{lll}
a & a^{2} & a^{3}-1 \\
b & b^{2} & b^{3}-1 \\
c & c^{2} & c^{3}-1
\end{array}\right|=0 \text { in which } a, b, c
$$

are different, then show that $a b c=1$.
7. Find the Fourier series expansion of the function $f(x)=x^{2},-\pi \leq x \leq \pi$.
Hence show that
(a) $\sum \frac{1}{\mathrm{n}^{2}}=\frac{\pi^{2}}{6}$
(b) $\sum \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$
(c) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots .=\frac{\pi^{2}}{12}$
8. Express the function $f(x)=x$ as a half range sine and cosine series in $0<x<2$.
9. (a) Form a PDE by eliminating the arbitrary constants a and b from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
(b) Form a PDE by eliminating the arbitrary function f from $z=f\left(\frac{x y}{z}\right)$.
(c) Solve $\frac{\partial^{2} z}{\partial x^{2}}+z=0$, given that when $x=0, z=e^{y}$ and $\frac{\partial z}{\partial x}=1$.
$3+3+4$
(b) Show that every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrix.
(c) Express the following matrix as the sum of a symmetric and a skew-symmetric matrix:

$$
\left[\begin{array}{ccc}
3 & -2 & 6 \\
2 & 7 & -1 \\
5 & 4 & 0
\end{array}\right]
$$

$4+3+3$
5. (a) Solve the following equations by Cramer's rule : $x+y+z=4, x-y+z=0,2 x+y+z=5$.
(b) Solve the following equations by matrix method:

$$
3 x+4 y+5 z=4, x+2 y=-1,5 x+y+z=5
$$

6. (a) Test for convergence of the series

$$
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots . . \infty
$$

(b) Discuss the convergence of the series
(i) $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$
(ii) $1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+\ldots \infty$

