11. (a) Find $\int_{0}^{1} \frac{d x}{x^{2}}$ if possible. What is the Cauchy value of this integral.
(b) Find the entire length of the curve $r=a \operatorname{Cos} 2 \theta$, within $\theta=0$ to $\theta=\pi$.
12. (a) Prove that the greatest rectangle inscribed in a given circle is a square.
(b) Find the value of $\int_{0}^{\infty} \frac{d x}{1+x^{2}}$, if possible.
(Symbols have their usual meanings)

BACHELOR OF POWER ENGINEERING EXAMINATION, 2017
(1st Year, 1st Semester, Supplementary) Mathematics - I Q

Time : Three hours
Full Marks : 100

Answer any ten questions.
All question carries equal marks.

1. (a) Prove by vector method $\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}$.
(b) If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=10,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=6$, find $|\vec{a} \times \vec{b}|$. Also find unit normal vector to the plane of vectors \vec{a} and \vec{b}.
2. (a) Prove that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0$ under what condition $(\vec{a} \times \vec{b}) \times \vec{c}=a \times(\vec{b} \times \vec{c})$.
(b) Examine whether the vectors $2 \hat{i}+3 \hat{j}+\hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$, and $\hat{i}+2 \hat{j}+3 \hat{k}$ are coplaner or not?
3. (a) The components of a contravariant vector in (x^{i}) coordinate system are 5 and 6 . Find its components in $\left(\bar{x}^{i}\right)$ coordinate system, if $\bar{x}^{1}=3 x^{1}+4 x^{2}$, $\bar{x}^{2}=5 x^{1}-2 x^{2}$.
(b) Prove that $d x^{i}$ is a contravariant vector and δ_{j}^{i} is a mixed tensor of type $(1,1)$.
4. (a) Evaluate $\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} x^{2} d x d y d z$.
(b) Prove that $B(m, n)=B(n, m)$ and also find $\Gamma\left(\frac{1}{2}\right)$.
5. (a) Prove that $\Gamma(n+1)=\lfloor n$, for positive integer n.
(b) Evaluate $\int_{0}^{1} x^{4}(1-x)^{7} d x$.

Using Beta-Gamma functions.
6. (a) State Rolle's theorem and verify it for the function $f(x)=|x|,-1 \leq x \leq 1$.
(b) Find $\lim _{x \rightarrow \gamma_{2}}(\operatorname{Sin} x)^{\tan x}$.
7. (a) Find the value of θ in the Mean value theorem $f(a+h)=f(a)+h f^{\prime}(a+\theta h), 0<\theta<1$ for the function $f(x)=a x^{2}+b x+c$.
(b) Find Taylor series expansion for the function $f(x)=e^{x}$ about $x=0$.
8. (a) If $\operatorname{Cosu}=\frac{x+y}{\sqrt{x}+\sqrt{y}}$, then prove that
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+\frac{1}{2} \operatorname{Cot} u=0$
(b) If $y=\left(x^{2}-1\right)^{n}$, then show that
$\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$.
9. (a) Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\gamma / 2} \operatorname{Sin}(x+y) d x d y$.
(b) If $\mathrm{y}=\mathrm{x}^{2 \mathrm{n}}$, where n is a positive integer, then show that $y_{n}=2^{n}\{1.3 \cdot 5 \ldots(2 n-1)\} x^{n}$.

(b) Given $x+y=3$; find the maximum and minimum values of $\frac{9}{x}+\frac{36}{y}$.

