10. Solve by method of separation of variable:

$$
c^{2} u_{x x}-u_{t t}=0, \quad 0 \leq x \leq a, t \geq 0
$$

subject to $u(0, t)=u(a, t)=0$ and $u(x, 0)=f(x)$, $u_{t}(x, 0)=g(x)$.
11. (a) Solve : $\left(D^{2}+9\right) y=x \operatorname{Sin} x$
(b) $x \cos x \frac{d y}{d x}+y(x \operatorname{Sin} x+\operatorname{Cos} x)=1$
12. Define Bersel's function of order n and show that $J_{+n}(x)$ and $J_{-n}(x)$ are linearly dependent.

Also prove that $\int_{0}^{1} \frac{u J_{0}(x u)}{\left(1-u^{2}\right)^{1 / 2}} d u=\frac{\operatorname{Sin} x}{x}$ $5+5$

BACHELOR OF POWER ENGINEERING EXAMINATION, 2017

(1st Year, 2nd Semester)
Mathematics - III Q
Time : Three hours
Full Marks : 100

Answer any ten questions.

1. (a) Find the velocity and acceleration of a particle which moves along the curve $x(t)=2 \sin 3 t, y(t)=2 \cos 3 t$, $z=8 t$ at $t=\frac{\pi}{12}$. Also find the magnitude of the velocity and acceleration at that point.
(b) Find the curvature and torsion of a space curve $\vec{r}(t)=a \cos t \hat{i}+a \sin t \hat{j}+b t \hat{k}$ at any point $t>0 . \quad 4+6$
2. (a) Prove that $\vec{P}=e^{-a x}(\vec{A}$ Sinay $+\vec{B}$ Cosay $)$ satisfies $\frac{\partial^{2} \vec{p}}{\partial x^{2}}+\frac{\partial^{2} \vec{p}}{\partial y^{2}}=0$, where \vec{A} and \vec{B} are constant vectors and ' a ' is a scalar.
(b) Find the unit normal vector and first fundamental form for a surface $\vec{r}=(u+v) \hat{i}+(u-v) \hat{j}+4 u v \hat{k}$. $5+5$
3. (a) Find the directional derivative of $\psi=2 x^{2} z-3 x y^{2} z^{2}$ at $(3,1,-3)$ in the direction $3 \hat{i}-4 \hat{j}+5 \hat{k}$.
(b) Find ' a^{\prime} for which $\vec{F}=\left(a x y-z^{3}\right) \hat{i}+(a-2) x^{2} \hat{j}+(1-a) x z^{2} \hat{k}$ is irrotational.
4. (a) State Gaus's divergence theorem. Use it to evaluate $\iint_{S}\left\{\left(x^{3}-y z\right) \hat{i}-2 x^{2} y \hat{j}+2 \hat{k}\right\} \cdot \vec{n}$ ds, where S denotes the surface of the cube bounded by the planes $x=0$, $x=a ; y=0, y=a ; z=0, z=a$.
(b) If $f(\vec{t})=\left(t^{2}-t\right) \hat{i}+\left(3 t^{4}-4\right) \hat{j}+5 t \hat{k}$, find $\int_{2}^{3} f(\vec{t}) d t$.
$7+3$
5. (a) Show that the straight lines whose direction cosines are given by $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$ and $\mathrm{fmn}+\mathrm{gnl}+\mathrm{hlm}=0$ are perpendicular if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$.
(b) Find the equation of the plane through $(2,5,-8)$ and perpendicular to each of the planes $2 x-3 y+4 z+1=0$ and $4 x+y-2 z+6=0$.

5+5
6. (a) Find the magnitude of the shortest distance between the st. lines $\frac{x}{4}=\frac{y+1}{3}=\frac{z-2}{2}$ and $5 x-2 y-3 z+6=0=x-3 y+2 z-3$.
(b) Prove that the st. lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar and also find the equation of the plane in which they lie.
7. (a) Find the centre and diameter of the circle where the plane $x-2 y+2 z=3$ intersects the sphere $x^{2}+y^{2}+z^{2}-8 x+4 y+8 z-45=0$.
(b) Solve $y=p x+4 / p$, where $p=\frac{d y}{d x}$ and obtain its singular solution.
8. (a) Solve :
$y(1+x y) d x+x(1-x y) d y=0$.
(b) Solve by method of variation of parameters for $y_{2}+a^{2} y=\tan a x$.
9. (a) Define Legendre polynomial and show that

$$
n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)
$$

(b) Prove that
$\int_{-1}^{1} P_{n}(x) d x=0$, if $n \geq 1$.

