Ref. No.: Ex/Met/T/325/2017

## B.E. METALLURGICAL ENGINEERING, THIRD YEAR, SECOND SEMESTER EXAM 2017 (Old) Subject: TESTING OF MATERIALS & QUALITY CONTROL

Time: Three Hours Full Marks: 100

(Answer Question No. 1 and any four from the rest; All parts of a question should be answered chronologically)

## Q 1. Answer any five from the following with justification: $4 \times 5 = 20$

- (a) Brinell hardness of a material is load dependent
- (b) Hardness testing method of Gray Cast Iron
- (c) Influence of gauge length in tensile elongation
- (d) Role of grain size on creep deformation resistance of a material
- (e) Role of grain size on impact toughness of a material
- (f) Effect of corrosive medium on fracture toughness of material
- (g) Effect of strain rate on equicohesive temperature
- **Q 2. (a)** If a true stress-true strain curve is given by  $\sigma = 1250\epsilon^{0.27}$ , where stress is in MPa, what is the ultimate tensile strength of the material?
  - (b) Write down the equation correlating flow stress with strain rate sensitivity. Using this equation determine the change in flow stress for commercially pure aluminium for a two-order of magnitude change in strain rate at 25°C and 440°C. The values of C at these two temperatures are 70.30 MPa and 14.50 MPa; and values of m at these temperatures are 0.066 and 0.211.
  - (c) What is superplasticity? In what type of material microstructure superplasticity is observed?
  - (d) On what factor does tensile uniform elongation of a material depend? Explain.

5+6+3+2+4 = 20

- **Q 3. (a)** What is universal slope equation and what is its utility? How the universal slope equation is related with Coffin-Manson and Basquin relationship?
  - (b) "True fatigue endurance behavior is not observed in all types of materials" Justify.
  - (c) Discuss the effect of mean stress on fatigue endurance behavior.
  - (d) What is the similarity between fatigue endurance limit and threshold stress intensity range for fatigue crack growth?

    3+2+5+5+5 = 20

## Q 4. Write short notes on the following:

- (a) Vickers hardness testing method; (b) Non-destructive inspection by liquid dye penetration method; (c) Wood's model for fatigue crack growth. 7+6+7 = 20
- Q5. (a) Discuss cumulative fatigue damage phenomenon.
  - (b) After giving an example justify the creep phenomenon occurring at room temperature.
  - (c) Arrange in increasing order of creep resistance of a material with justification -
    - (i) Single crystal; (ii) polycrystal; (iii) Directionally solidified crystal
  - (d) Discuss the effect of specimen size on fatigue performance.

6+4+5+5=20

- Q 6. (a) Draw and explain the nature of constant load creep curve of a material.
  - (b) What are the ways to improve the fatigue strength of a material discuss.
  - (c) Why does fatigue failure start from the surface even in case of push-pull uniaxial cyclic loading of very good surface finish.
  - (d) How can you prove that tensile yield strength is a material property?