Ex/MET/T/314/2017(S)

Bachelor of Metallurgical Engineering 3rd Year 1st Semester Examination, 2017 (Supplementary)

Chemical Kinetics and Mass Transfer

Time: Three Hours

Full Marks-100

Answer any Five questions.

1. i) The rate of a 2nd-order reaction is given as

$$r_A = 4 C_A^2$$
, mol/liter.hr

5

What is the value and unit of the rate constant? If the rate is expressed in mol/cm³.sec and concentration in mol/cm³, how will the value and unit of the rate constant change?

ii) The total pressure in a closed reactor in which pure AB fed at 1 atm undergoes the 2nd-order irreversible reaction

$$\begin{array}{c}
k \\
2AB \longrightarrow A_2B_2
\end{array}$$

decreases to 0.8 atm in 5 mintes at 500 K. Determine k.

- After 8 minutes in a batch reactor, reactant ($C_{A0} = 1 \text{ mol/liter}$) is 80% converted; after 18 minutes, conversion is 90%. Find a rate equation representing this reaction. (Note, A trial and error solution may be necessary.)
- 2. i) Consider a gas phase reaction $2A + B \rightarrow A_2B$ which takes place according to the following 2-step mechanism:

i.
$$A + B \stackrel{k_1}{\rightleftharpoons} AB^*$$

ii.
$$AB^* + A \rightarrow A_2B$$

If the initial concentrations are $C_{A0} = 10 \text{ mol/m}^3$ and $C_{B0} = 5 \text{ mol/m}^3$, find the value of C_{A2B} at t = 30 sec, when the reaction is carried out in a constant-volume batch reactor at temperature T. Given, $k_1 = 0.02 \text{ m}^3/\text{mol.sec}$, $k_2 = 3 \text{ sec}^{-1}$ and $k_3 = 6 \text{ m}^3/\text{mol.sec}$.

ii) Establish the following design equations for a steady-state mixed flow reactor:

$$\frac{V}{F_{40}} = \frac{\tau}{C_{40}} = \frac{X_A}{-r_A} \,.$$

3. i) Consider the following 2nd-order homogeneous reaction:

$$k$$
A+B \longrightarrow AB

Using the following data, determine the activation energy (E) of the reaction.

<i>T</i> , K	C_A , mol/lit	$C_{\rm B}$, mol/lit	$-dC_A/dt$, mol/lit.min
1000	5	3	0.3
1500	5	2	1.0

ii) Consider the evaporation of liquid Zn taken in a rectangular tube into the stagnant film of argon formed by pure argon flowing over the tube at 764 0 C and 1 atm. Given, the saturated vapor pressure of liquid Zn at 764 0 C is 0.5 atm, Z_{2} - Z_{1} = 0.02 m, and D_{Zn-Ar} (at 764 0 C) = 1.43 × 10⁻⁴ m²/s. Find

a)
$$J_{Ar(-Z), Z1}^*$$

b) $V_{Zn, Z, Z1}$

4. Consider the reduction of a dense cylindrical FeO sample (L>>r)) with a flowing mixture of CO-CO₂ mixture, which is controlled by 1-dimensional pore diffusion in the r-direction though the product (Fe) layer. The reduction reaction is

$$FeO(s) + CO(g) = Fe(s) + CO_2(g)$$
.

i) Show that the molar rate of reduction of FeO, $-dn_{FeO}/dt$, can be expressed as follows:

$$-dn_{\text{FeO}}/dt = -\frac{2\pi L(C_{\text{CO,b}} - C_{\text{CO,e}})D_{\text{pore}}}{\ln(r^{0}_{\text{FeO}}/r_{\text{FeO}})},$$

where r^0_{FeO} is the initial radius of the cylinder having the length L.

ii) Show that the progress of the reduction can be expressed as

$$X_{\text{FeO}} + (1 - X_{\text{FeO}}) \ln (1 - X_{\text{FeO}}) = \frac{4D_{\text{pore}} (C_{\text{CO,b}} - C_{\text{CO,e}})t}{\rho_{\text{m,FeO}} (r^0_{\text{FeO}})^2}.$$

Find the order of the reaction.

5

Refer to the problem of dissolution of a flat plate (A) in a flowing fluid (B). If the local Sherwood Number at x = 0.5 m is 1000 and $D_{AB} = 1.2 \times 10^{-8}$ m²/s, determine the steady rate of dissolution W_{A_1} (mole/time) of the plate. Given,

$$L = 1 \text{ m}$$
 $W \text{ (width of the plate)} = 0.3 \text{ m}$
 $C_{As} = 40 \text{mol/m}^3$ $C_{Av} = 0$.

iii) Considering the following 1st-order reversible reaction

$$A \rightleftharpoons_{k_b} B, M = C_{B0} / C_{A0},$$

derive the rate equation

8

$$C_A$$
 - C_{Ae}
-In (-----) = At , where A = f(k_f , C_{A0} , M , C_{Ae}).
 C_{A0} - C_{Ae}

- 6. i) Give the two basic postulates, one thermodynamic and the other kinetic, of the activated complex theory.
 - ii) Give one metallurgical example for
 - (a) series reactions
 - (b) parallel reactions

3

- iii) Give an example in which the term "order" does not apply in the rate equation of the reaction.
- iv) Superimpose the ln k vs 1/T plots for the two reactions, $P \rightarrow Q$ and $M \rightarrow N$, for each of the following two cases:

(a)
$$A_{P \to Q} = A_{M \to N}$$
, $E_{P \to Q} < E_{M \to N}$

1

(b)
$$E_{P\rightarrow Q} = E_{M\rightarrow N}$$
, $A_{P\rightarrow Q} < A_{M\rightarrow N}$

5

v) Consider the half-order nonelementary homogeneous reaction

$$k$$
 $A \rightarrow B$.

Find its integrated form of rate equation $(X_A \text{ vs } t)$. Explain with the help of a suitable plot how you will find out the rate constant k.

4