BACHELOR OF ENGINEERING IN METALLURGICAL **ENGINEERING SUPPLEMENTARY EXAMINATION, 2017**

1st year, 1st semester Mathematics-IN

Time: 3 hours

Full Marks: 100

(Symbols have their usual meaning)

Answer any ten from the following questions.

1. a) Prove by induction that for each $n \in \mathbb{N}$, and for each $n \ge 2$, $(n+1)! > 2^n$. b) Show that the function f, defined by $f(x) = x \sin \frac{1}{x}$, when $x \neq 0$, approaches to 0 as $x \rightarrow 0$.

[5+5]

2. a) State Sandwich theorem for limit of a function and hence prove that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e.$

b) Prove that $\lim_{x\to 0} \frac{e^{x}-1}{x} = 1$. [6+4]

3. a) Examine the continuity of the following function at (0,0)

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{where } x^2 + y^2 \neq 0\\ 0, & \text{where } x^2 + y^2 = 0. \end{cases}$$

b) Establish
$$\lim_{x\to 0} xy \frac{x^2-y^2}{x^2+y^2} = 0$$
, using $\varepsilon - \delta$ definition. [5+5]

- 4. a) Verify that $\log \tan x$ $(0 < x < \frac{\pi}{2})$ has neither a maximum nor a minimum at
 - b) Investigate the continuity of the function

$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ -1, & x = 0 \end{cases}.$$

[5+5]

- 5. a) Use M.V.T to show that $\frac{x}{1+x} < \log(1+x) < x$, if x > 0.
 - b) State Mean Value Theorem (Langrange's form) and give the geometrical interpretation of this theorem.

[5+5]

6. a) If
$$y = \frac{1}{x^2 + a^2}$$
, then find y_n .
b) Establish $\lim_{x \to \infty} \frac{2x^8 - 7x^2 + 5}{9x^4 + 5x + 12} = \infty$. [6+4]

- 7. a) State Taylor's infinite series and hence expand $f(x) = \sin x$ in powers of x.
 - b) Show that x^x has a minimum value at $x = \frac{1}{e}$.

[5+5]

- 8. (a) Find the value of $\lim_{n\to\infty} \left[\frac{n}{n^2} + \frac{n}{1^2 + n^2} + \frac{n}{2^2 + n^2} + \cdots + \frac{n}{(n-1)^2 + n^2} \right]$.
 - (b) Evaluate $\int_0^{\pi/2} \frac{x}{\sin x + \cos x} dx$.

[5+5]

- 9. (a) Examine the convergence of improper integral $\int_0^\infty \frac{\cos x}{1+x} dx$.
 - (b) Test the convergence of $\int_1^\infty \frac{dx}{x\sqrt{1+x^2}}$.

[5+5]

- 10. (a) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$; m > 0, n > 0.
 - (b) Evaluate $\int_0^{\pi/2} \sqrt{\tan \theta} \, d\theta$. [5+5]
- 11. (a) Evaluate $\iint y \, dx \, dy$ over the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
 - (b) Find the area of a plate in the form of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Hence, find the area enclosed by the given ellipse.

[5+5]

- 12.(a) Define bounded sequence. Find the lower and upper bounds of the sequence $\{x_n\}$, where $x_n = \frac{2n-7}{3n+2}$.
 - (b) Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{(n^n)^2}$. [5+5]
- 13. (a) Test the convergence of the series

$$1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \dots + \frac{2^n - 2}{2^n + 1}x^{n-1} + \dots$$

(b) Show that the p-series $\frac{1}{1^p}+\frac{1}{2^p}+\frac{1}{3^p}+\cdots$ converges for p>1 and diverges for $p\geq 1$. [6+4]