13. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right]$, then verify that
i) A satisfies of its own characteristic equation.
ii) Hence find A^{9} and
iii) Find also A^{-1}
iv) Find the matrix represented by

$$
2 A^{5}-3 A^{4}+2 A^{3}-A^{2}+I
$$

14. If $\mathrm{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, show that for every integer $n \geq 3, \quad A^{n}=A^{n-2}+A^{2}-I . \quad$ Hence determine A^{50}.

Bachelor of Engineering in Metallurgical

Engineering Examination, 2017

(1st Year, 2nd Semester)

Mathematics - IIN

Time: Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part
(Notation/Symbols have their usual meanings)

PART - I

Answer any five questions.

1. a) If two vectors are parallel, then show that one of them can be expressed as a scalar multiple of the other.
b) Show that the three points $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and $-7 \hat{j}+10 \hat{k}$ are collinear.
c) Show, by vector method, that the straight line joining the mid points of any two sides of a triangle is parallel to the third side and half of its length.
$3+3+4$
2. a) Show that the necessary and sufficient condition for two vectors \vec{a} and \vec{b} are perpendicular is $\vec{a} \cdot \vec{b}=0$.
b) Show that, if $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are mutually perpendicular.
c) Prove, by vector method, that the parallelograms on the same base and between the same parallels are aqual in area.
$3+3+4$
[Turn over
3. a) If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, then show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$.
b) Given two vectors $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}$, express \vec{b} in the form $\vec{b}_{1}+\vec{b}_{2}$, where \vec{b}_{1} is parallel to \vec{a} and \vec{b}_{2} is perpendicular to \vec{a}.

5+5
4. a) If $\vec{u}(t)$ and $\vec{v}(t)$ are two vector functions of the scalar variable t, then show that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})=\frac{\mathrm{d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{u}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}
$$

Hence show that

$$
\mathrm{u} \frac{\mathrm{du}}{\mathrm{dt}}=\overrightarrow{\mathrm{u}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}}, \text { where } \mathrm{u}=|\overrightarrow{\mathrm{u}}| \text {. }
$$

b) Show that if $\vec{r}=\vec{a} \sin \omega t+\vec{b} \cos \omega t$, where $\vec{a} \cdot \vec{b}$ are constant vectors and ω is a constant scalar, then
$\frac{d^{2} \vec{r}}{d t^{2}}=-\omega^{2} \vec{r} \quad$ and $\quad \vec{r} \times \frac{d \vec{r}}{d t}=-\omega \vec{a} \times \vec{b}$.
$6+4$
5. a) Find the directional derivative of $f(x, y, z)=x y^{3}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$.
b) If n be a positive integer and $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then show that $\mathrm{A}^{\mathrm{n}}=\left[\begin{array}{cc}\cos \mathrm{n} \theta & \sin \mathrm{n} \theta \\ -\sin \mathrm{n} \theta & \cos \mathrm{n} \theta\end{array}\right]$.
11. a) If $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$, then find A^{2} and show that $\mathrm{A}^{2}-\mathrm{A}^{-1}$.
b) Show that for the skew-symmetric matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 3 \\
-2 & -3 & 0
\end{array}\right]
$$

$(\mathrm{I}-\mathrm{A})(\mathrm{I}+\mathrm{A})^{-1}$ is an orthogonal matrix.
12. a) Reduce the following matrix to the normal form and find its rank

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 2 & 1 \\
1 & 3 & 1 & 0 & 3 \\
2 & 6 & 4 & 2 & 8 \\
3 & 9 & 4 & 2 & 10
\end{array}\right)
$$

b) Find the eigen values of the matrix

$$
\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

PART - II

Answer any five questions.
8. a) Prove that

$$
\left|\begin{array}{ccc}
-2 a & a+b & a+c \\
b+a & -2 b & b+c \\
c+a & c+b & -2 c
\end{array}\right|=4(b+c)(c+a)(a+b)
$$

b) Solve by Cramer's rule of the system of equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=14 \\
& x-y+z=2
\end{aligned}
$$

9. a) Prove that if A and B be an orthogonal matrices of the same order then $A B$ is orthogonal.
b) Solve by matrix method the system of equations

$$
\begin{aligned}
& x+z=0 \\
& 3 x+4 y+5 z=2 \\
& 2 x+3 y+4 z=1
\end{aligned}
$$

10. a) Show that $\left|\begin{array}{ccc}a^{2}+\lambda & a b & a c \\ a b & b^{2}+\lambda & b c \\ a c & b c & c^{2}+\lambda\end{array}\right|$ is divisible by λ^{2} and find the other factors.
b) If $u=x^{2} y z$ and $v=x y-3 z^{2}$, then find
i) $\nabla(\nabla u \cdot \nabla v)$
ii) $\nabla \cdot(\nabla \mathrm{u} \times \nabla \mathrm{v})$.
c) Define a solenoidal vector.
11. a) If $\vec{f}=3 x y \hat{i}-y^{2} \hat{j}$ evaluate $\int_{c} \vec{f} . d \vec{r}$, where C is the curve in the $x y$-plane $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
b) Apply Green's theorem to prove that the area enclosed by a plane curve is $\frac{1}{2} \int_{c}(x d y-y d x)$. Hence find the area of an ellipsa whose semi-major and semi-minor axes are of lengths a and b.
12. a) State the Stoke's theorem.
b) Define an irrotational vector.
c) A fluid motion is given by

$$
\overrightarrow{\mathrm{v}}=(\mathrm{y}+\mathrm{z}) \hat{\mathrm{i}}+(\mathrm{z}+\mathrm{x}) \hat{\mathrm{j}}+(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}} .
$$

Is this motion is irrotational? If so, find the velocity potential.

