13. If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then verify that

- i) A satisfies of its own characteristic equation.
- ii) Hence find A^9 and
- iii) Find also A^{-1}
- iv) Find the matrix represented by

 $2A^{5} - 3A^{4} + 2A^{3} - A^{2} + I.$ 14. If $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, show that for every integer

$$n \ge 3$$
, $A^n = A^{n-2} + A^2 - I$. Hence determine A^{50}

BACHELOR OF ENGINEERING IN METALLURGICAL ENGINEERING EXAMINATION, 2017 (1st Year, 2nd Semester) MATHEMATICS - IIN Time : Three hours Full Marks : 100 (50 marks for each part) Use a separate Answer-Script for each part (Notation/Symbols have their usual meanings) PART - I Answer *any five* questions.

- a) If two vectors are parallel, then show that one of them can be expressed as a scalar multiple of the other.
 - b) Show that the three points $\hat{i} 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} 4\hat{k}$ and $-7\hat{j} + 10\hat{k}$ are collinear.
 - c) Show, by vector method, that the straight line joining the mid points of any two sides of a triangle is parallel to the third side and half of its length. 3+3+4
- 2. a) Show that the necessary and sufficient condition for two vectors \vec{a} and \vec{b} are perpendicular is $\vec{a} \cdot \vec{b} = 0$.
 - b) Show that, if $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then \vec{a} and \vec{b} are mutually perpendicular.
 - c) Prove, by vector method, that the parallelograms on the same base and between the same parallels are aqual in area.
 3+3+4

[Turn over

Ex/MET/Math/T/122/2017

- 3. a) If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, then show that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to $\vec{a}, \vec{b}, \vec{c}$.
 - b) Given two vectors $\vec{a} = 3\hat{i} \hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j} 3\hat{k}$, express \vec{b} in the form $\vec{b}_1 + \vec{b}_2$, where \vec{b}_1 is parallel to \vec{a} and \vec{b}_2 is perpendicular to \vec{a} . 5+5
- 4. a) If $\vec{u}(t)$ and $\vec{v}(t)$ are two vector functions of the scalar variable t, then show that

$$\frac{d}{dt} (\vec{u} \cdot \vec{v}) = \frac{d\vec{u}}{dt} \cdot \vec{v} + \vec{u} \cdot \frac{d\vec{v}}{dt}.$$

Hence show that

$$u\frac{\mathrm{d}u}{\mathrm{d}t} = \vec{u} \cdot \frac{\mathrm{d}\vec{u}}{\mathrm{d}t}, \text{ where } u = \left|\vec{u}\right|$$

b) Show that if $\vec{r} = \vec{a} \sin \omega t + \vec{b} \cos \omega t$, where $\vec{a} \cdot \vec{b}$ are constant vectors and ω is a constant scalar, then

$$\frac{d^2\vec{r}}{dt^2} = -\omega^2\vec{r} \quad \text{and} \quad \vec{r} \times \frac{d\vec{r}}{dt} = -\omega \,\vec{a} \times \vec{b}.$$
 6+4

5. a) Find the directional derivative of $f(x, y, z) = xy^3 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.

b) If n be a positive integer and
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then
show that $A^{n} = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$.
11. a) If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then find A^{2} and show that $A^{2} - A^{-1}$.

b) Show that for the skew-symmetric matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$

 $(I-A)(I+A)^{-1}$ is an orthogonal matrix.

12. a) Reduce the following matrix to the normal form and find its rank

(0	0	1	2	1)
1	3	1	0	3
2	6	4	2	8
3	9	4	2	10)

b) Find the eigen values of the matrix

 $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

[Turn over

PART - II

Answer any five questions.

8. a) Prove that

- $\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(b+c)(c+a)(a+b)$
- b) Solve by Cramer's rule of the system of equations
 - x + y + z = 6x + 2y + 3z = 14x y + z = 2
- 9. a) Prove that if A and B be an orthogonal matrices of the same order then AB is orthogonal.
 - b) Solve by matrix method the system of equations

$$x + z = 0$$

$$3x + 4y + 5z = 2$$

$$2x + 3y + 4z = 1$$

10. a) Show that $\begin{vmatrix} a^2 + \lambda & ab & ac \\ ab & b^2 + \lambda & bc \\ ac & bc & c^2 + \lambda \end{vmatrix}$ is divisible by λ^2 and

find the other factors.

- b) If u = x²yz and v = xy 3z², then find

 ∇(∇u · ∇v)
 ∇·(∇u × ∇v).

 c) Define a solenoidal vector. 3+5+2
 6. a) If f = 3xyî y²ĵ evaluate ∫c f.dr, where C is the curve in the xy-plane y = 2x² from (0, 0) to (1, 2).
 b) Apply Green's theorem to prove that the area enclosed by a plane curve is 1/2 ∫c (x dy y dx). Hence find the area of an ellipsa whose semi-major and semi-minor axes are of lengths a and b. 3+7
- 7. a) State the Stoke's theorem.
 - b) Define an irrotational vector.
 - c) A fluid motion is given by

 $\vec{v} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}.$

Is this motion is irrotational ? If so, find the velocity potential. 2+2+6