Ref. No.: ME/5/T/411/2017(S)

B. MECHANICAL (EVENING) 4TH YEAR 1ST SEM. SUPPLE EXAMINATION, 2017

MATERIAL SC. AND ENGG.

Time: Three hours

Full Marks: 100

Answer any FIVE questions

1a) The potential energy of a system of two isolated atoms is given by the following expression:

$$U(r) = -\frac{A}{r^m} + \frac{B}{r^n}$$
, where $r = Interatomic distance; A, B, m and n are constants$

Derive the expressions for bond energy and bond length.

(14)

b) Mention a few characteristics of covalent bond.

(6)

2a) What is solid state diffusion? Explain any one diffusion mechanism.

(2+4)

b) For a carburization process, the carbon environment used has carbon content of 1.4%. The initial carbon content in steel is 0.3% and a carbon content of 0.8% is reached at a depth of 0.75 mm from the surface in 10 hours. Determine the carburization temperature.

Given:
$$D_o = 20 \times 10^{-6}$$
 $\frac{m^2}{s}$; $Q = 142 \frac{KJ}{mol}$; $R = 8.314 \frac{J}{mol K}$

Z	0.45	0.50	0.55	0.60
crf(Z)	0,4755	0.5205	0.5633	0.6034

- 3a) Derive the expression for composite elastic modulus under iso-stress condition. Also mention the
 assumption made to derive the expression.
- b) For a fibre reinforced composite material, the fibre takes 95% of the applied longitudinal force. The cross sectional area of the fibre is 30%. Calculate the modulus ratio of the composite. (8)
- 4a) Explain the 'energy band structure' in solids. Differentiate among conductors, semiconductors and insulators in the light of energy band structure. (6+6)
- b) The electrical resistivity of pure silicon is $2.3 \times 10^3 \ \Omega$ -m at 50 °C. Calculate its electrical conductivity at 300 °C. Assume that E_g of silicon is 1.106 eV.

Boltzman constant =
$$86.2 \times 10^{-6} \frac{eV}{K}$$
 (8)

[Turn over

5a) What do you mean by 'Intrinsic' and 'Extrinsic' semiconductors?			
b) For intrinsic semiconductors, prove that $\frac{n}{N} = e^{-\frac{Eg}{2KT}}$. The notations bears usual meanings.			
What is p-type semiconductors?	(6+4)		
6 a) Explain the Fermi-Dirac electron energy distribution function with the meanings of different			
notations used in the equation.	(8)		
b) Explain the terms 'piezoelectricity'. Mention three piezoelectric materials.			
c) A piezoelectric material has elastic modulus 85 GPa. Calculate the stress required to change its			
polarization from 850 $\frac{c}{m^2}$ to 880 $\frac{c}{m^2}$.	(5)		
7a) State Fick's laws of diffusion.			
b) Explain the Arrhenius equation for solid state diffusion.			
c) Explain the stress- strain diagram for a fiber reinforced composite material.			
8. Write short notes on the followings (any four):			
a) Co-ordination number			
b) Diffusion and material property			
e) Metallie bond			
d) Distusion flux			
e) Bond length			
f) Electrical conductivity			
g) Composite material			