Ref. No.: Ex/ME/5/T/323A/2017

B.E. MECHANICAL ENGINEERING (PART TIME) 3RD YEAR 2ND SEM. EXAMINATION, 2017 MECHANICAL MEASUREMENT AND INDUSTRIAL STATISTICS

Time: Three hours Full Marks: 100

Answer any FIVE questions

(Tables of z, t, F and Chi-square distributions can be used)

- Ia) Write the expression of probability density function of normal distribution. Draw normal distributions for the following cases (draw at least two distribution in each case): (a) Same mean but different SD (b)
 Different mean but same SD c) Different mean and different SD (2+6)
- b) A manufacturing process has the following data regarding the process:
 Process mean = 60 unit; Process standard deviation = 6 unit; Production specification = 55±16 unit
 Calculate rejection percentage of products. (12)
- 2a) Explain the followings with reference to testing of hypothesis:

Type-I error, Type-II error, Left Tailed Test, Right Tailed Test (12)

- b) What is test statistics? Mention the expressions of test statistics for testing a hypothesis with z-test and ttest with meanings of notations used. (2+6)
- 3) The following data shows the cutting speed of a grade of HSS cutting tool (in m/min)

250, 245, 262, 236, 240, 252, 266, 270, 238, 252

Can it be concluded that tensile strength of the material is 250 m/min with $\alpha = 5\%$? Determine the 95% confidence interval of true cutting speed of HSS cutting tool. Clearly write the expressions for 'null hypothesis' and 'alternate hypothesis'? (16+4)

4a) Define the term 'Reliability' and mention its mathematical expression.

Show that,
$$\lambda(t) = \frac{f(t)}{R(t)}$$
, the notations bear the usual meanings, (4+8)

b) Prove that $\int_0^{\alpha} R(t)dt$, the notations bear the usual meanings, (8)

[Turn over

5a) Explain the exponential failure law. Show that the failure rate remains constant for component	ts
following exponential failure law.	(4+6)
b) A component follows exponential failure law and has constant failure rate 3.5×10^{-4} failures per hour.	
Calculate reliability and failure probability for a specified time period of 2500 hour. Derive the	he expressions
used.	(6+4)
6a) What do you mean by 'shape parameter' and 'characteristic life' of a component?	(6)
b) The times to failure of 10 components are as follows (in days):	-
1050, 805, 1350, 980, 1075, 1285, 870, 1220, 1390, 1090	
Assume two parameter Weibull distribution and estimate the values of failure parameters using	g analytical
method. Calculate the reliability of the component for a specified time period of 850 days.	(10+4)
7a) Two components having same and constant failure rate 'λ' are connected to form a standby s with 1-operating unit and 1-standby unit. Derive the expression for system reliability and M'	
Tythe system. Type-II error, a Left Tyffed Test. Right Tested Test	(12)
b) By drawing a rough sketch of Weibull graph paper, explain how to determine the failure parameters using	
this graph paper.	(8)
8. Write short notes on the followings (any four):	(4 x 5)
a) Testing of hypothesis	
b) Median rank	
c) Confidence level	
d) k-out of-m system configuration	
e) Confidence interval	
g) parallel system configuration	
h) Degrees of freedom	