B. MECH. ENGG. (EVENING) SUPPLE EXAMINATION, 2017 (3rd Year 1st Semester) DYNAMICS OF MACHINES Time: 3 hours Full Marks: 100 ## [Answer any five] - Explain rotating unbalance with equation of motion and suitable plots. Find the expression for suitable cross sectional area of a flywheel used for an IC engine. Mention requisite assumption. - 2. Explain what is 'Damping Ratio'. From the equation of motion of free vibration, derive expressions of overdamped, underdamped and critically damped motions and explain those with suitable curve plottings. 5+15 3. What do you mean by 'Logarithmic Decrement'. From the equation of motion of viscously damped forced vibration, show the vector relationship and with the help of the same, solve the equation and show the curves of 'amplitude' and 'phase angle' with 'frequency ratio' for different 'damping ratios'. 6 + 14 4. Explain the balancing procedure of masses m_1 , m_2 , m_3 , m_4 and at radius of r_1 , r_2 , r_3 , r_4 with the use of additional masses. Given: $m_1 = m_2 = 10 \text{ kg}$, $m_3 = m_4 = 50 \text{ kg}$. All radius r_1 , r_2 , r_3 , r_4 are equal to 5 mm. Initial configuration: m_1 is horizontal towards right, m_2 is 75° apart from the same, m_3 is towards left, m_4 is further 30° apart from m_3 . Distance between m_1 & m_2 is 1 m, that between m_2 & m_3 is 2 m and that between m_3 & m_4 is 1.5 m. - 5. What is 'Support Motion'. From the derivation of the same explain how to isolate vibration from an object oscillating support. 8+12 - 6. Write short notes on: 10 x 2 - i) Static and Dynamic Unbalance - ii) Seismometer & Accelerometer