Ref. No.: ME/5/T/212/2017(S)

B. MECHANICAL (EVENING) 2ND YEAR 1ST SEM. SUPPLE EXAMINATION, 2017

MATERIAL SC. AND ENGG.

Time: Three hours

Full Marks: 100

Answer any FIVE questions

- (8) "Graphite is soft and conductor while diamond is hard and insulator although both graphite and diamond are made up of same carbon atoms," ------ Explain.
- b) Calculate the density and ionic packing factor of MgO from the following data:

(12)

Radius of Magnesium ion = 0.078 nm,

Radius of Oxygen ion = 0.132 nm

Atomic weight of Magnesium = 24.3,

Atomic weight of Oxygen = 16

2a) Explain any two types of diffusion mechanisms.

(8)

b) At $900~^{\circ}\text{C}$, what is the time required to carburize a steel with initial composition of 0.2% carbon to 1% carbon at a depth of 0.2 mm? Assume a constant surface concentration of 1.4% carbon due to carburising atmosphere.

Given:
$$D_0 = 0.7 \times 10^{-4} = \frac{m^2}{s}$$
; $Q = 157 \frac{kJ}{mol}$; $R = 8.314 \frac{J}{mol K}$

Z	0.25	0.30	0.35	0.40
erf(Z)	0.2763	0.3268	0.3794	0.4284

(12)

- 3a) Derive the expression for composite elastic modulus under iso-stress condition. Also mention the assumption made to derive the expression. (8+4)
- b) For a fibre reinforced composite material, the fibre takes 95% of the applied longitudinal force. The cross sectional area of the fibre is 30%. Calculate the modulus ratio of the composite. (8)
- 4a) What do you mean by 'Intrinsic' and 'Extrinsic' semiconductors? (8)
- b) For intrinsic semiconductors, prove that $\frac{n}{N} = e^{-\frac{E_g}{2KT}}$. The notations bear usual meanings.

What is n-type semiconductors?

(8+4)

5a) Explain the Fermi-Dirac electron energy distribution function with the meanings of different

notations used in the equation.

(10)

b) Calculate the band gap (E_g) for a semiconductor from the following data :

(10)

Boltzman constant = $86.2 \times 10^{-6} \ eV/K$.

g) Activation energy

Temperature (°C)	Conductivity $(\Omega^{-1}m^{-1})$
30	370
120	1250

6a) What are Miller Indices? Explain the steps to determine the Miller Indices.b) Draw the following crystallographic planes:				
7a) Draw the different types of phase diagrams?				
b) What do you mean by 'eutectic poi	int' and 'eutectoid point' with reference to iron-carbon (Fe-C)			
equilibrium phase diagram.				
8. Write short notes on the followings (any four):				
a) Composite materials	b) Ionic bond			
c) Energy band gap	d) Diffusion flux			
e) Bond length	f) p-type semi-conductor			