ME/5/T/113/3/2017(S)

B. MECHANICAL ENGG. (EVENING) 1ST YR 1ST SEM SUPPLE EXAMINATION 2017

FLUID MECHANICS - II

Time: Three Hours

Full Marks: 100

Answer any FIVE questions. All the parts of a question should be answered together.

Assume any relevant data if necessary with suitable justifications.

Symbols carry their usual meanings.

- 1. (a) Derive velocity profile for two-dimensional steady laminar flow between two parallel plates.
 - b) An oil of specific gravity 0.85 and viscosity 1 Pas is flowing through a pipe of diameter 0.1 m with maximum of 2 m/s velocity at centre of the pipe. Find Reynolds number, discharge and wall shear stress. [12+8]
- 2. With appropriate sketches explain nominal, displacement and momentum thicknesses of boundary layer, and also discuss boundary layer growth over a flat plate in details.

[2+3+3+12]

- 3. a) Discuss the phenomena of boundary layer flow separation.
 - b) Using von Karman momentum integral equation and zero-pressure gradient over a flat plate, find boundary layer thicknesses $(\delta, \delta^*, \theta)$ over the plate when velocity profile for a laminar flow is given by $\frac{u}{u_m} = \frac{y}{\delta}$. [8+12]
- 4. a) Define source flow and doublet flow along with their mathematical definitions.
 - b) Using the method of superposition, simulate a complex flow consisting of uniform flow and doublet. Obtain stream function, velocity components and stagnation points for it. [8+12]
- 5. a) Find an expression for the speed of propagation of pressure wave through an adiabatic compressible fluid.
 - b) Formulate area-velocity relationship for compressible flow through a duct of variable flow-area. From it set the condition for achieving supersonic flow. [10+10]
- 6. Discuss the expansion process of compressible gas through a convergent-divergent nozzle. What is choking?
 - b) The drag force (F) resisting the motion of a sphere of diameter (D), moving with uniform velocity (V) through a fluid depends on the fluid viscosity (μ), fluid density (ρ), velocity (V) and diameter (D). Find from dimensional analysis the fundamental relationship between these variables. [13+7]
- 7. Write short notes on: (any FOUR)

 $[4 \times 5]$

- a) Hydrodynamically smooth and rough surfaces
- b) Hydraulic transients
- c) Mach number and Mach cone
- d) Vortex flow
- e) Water hammer
- f) Causes and effects of turbulence
- g) von Karman vortex street
- h) Free vortex and force vortex